Start Submission Become a Reviewer

Reading: The sensitivity of terrestrial carbon storage to historical climate variability and atmosphe...

Download

A- A+
Alt. Display

Original Research Papers

The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States

Authors:

H. Tian ,

The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, US
X close

J. M. Melillo,

The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, US
X close

D. W. Kicklighter,

The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, US
X close

A. D. McGuire,

US Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska, Fairbanks, AK 99775, US
X close

J. Helfrich

The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, US
X close

Abstract

We use the Terrestrial Ecosystem Model (TEM, Version 4.1) and the land cover data set of the international geosphere’biosphere program to investigate how increasing atmospheric CO2 concentration and climate variability during 1900–1994 affect the carbon storage of terrestrial ecosystems in the conterminous USA, and how carbon storage has been affected by land-use change. The estimates of TEM indicate that over the past 95 years a combination of increasing atmospheric CO2 with historical temperature and precipitation variability causes a 4.2% (4.3 Pg C) decrease in total carbon storage of potential vegetation in the conterminous US, with vegetation carbon decreasing by 7.2% (3.2 Pg C) and soil organic carbon decreasing by 1.9% (1.1 Pg C). Several dry periods including the 1930s and 1950s are responsible for the loss of carbon storage. Our factorial experiments indicate that precipitation variability alone decreases total carbon storage by 9.5%. Temperature variability alone does not significantly affect carbon storage. The effect of CO2 fertilization alone increases total carbon storage by 4.4%. The effects of increasing atmospheric CO2 and climate variability are not additive. Interactions among CO2, temperature and precipitation increase total carbon storage by 1.1%. Our study also shows substantial year-to-year variations in net carbon exchange between the atmosphere and terrestrial ecosystems due to climate variability. Since the 1960s, we estimate these terrestrial ecosystems have acted primarily as a sink of atmospheric CO2 as a result of wetter weather and higher atmospheric CO2 concentrations. For the 1980s, we estimate the natural terrestrial ecosystems, excluding cropland and urban areas, of the conterminous US have accumulated 78.2 Tg C yr-1 because of the combined effect of increasing atmospheric CO2 and climate variability. For the conterminous US, we estimate that the conversion of natural ecosystems to cropland and urban areas has caused a 18.2% (17.7 Pg C) reduction in total carbon storage from that estimated for potential vegetation. The carbon sink capacity of natural terrestrial ecosystems in the conterminous US is about 69% of that estimated for potential vegetation.

How to Cite: Tian, H., Melillo, J.M., Kicklighter, D.W., McGuire, A.D. and Helfrich, J., 1999. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus B: Chemical and Physical Meteorology, 51(2), pp.414–452. DOI: http://doi.org/10.3402/tellusb.v51i2.16318
2
Views
1
Downloads
  Published on 01 Jan 1999
 Accepted on 11 Nov 1998            Submitted on 9 Mar 1998

References

  1. Aber , J. D. , Magill , A. , Boone , R. , Melillo , J. M. , Steudler , P. A. and Bowden , R . 1993 . Plant and soil responses to chronic nitrogen additions at the Harvard Forest, Massachusetts . Ecol. Appl . 3 , 156 – 166 .  

  2. Aber , J. D. and Driscoll , C. T . 1997 . Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests . Glob. Biogeo-chem. Cyc . 11 , 639 – 648 .  

  3. Bazzaz , F. A . 1990 . The response of natural ecosystems to the rising global CO2 levels . Anna. Rev. Ecol. Syst . 21 , 167 – 176 .  

  4. Bormann , F. H. and Likens , G. E . 1979 . Pattern and process in a forested ecosystem . Springer-Verlag , New York .  

  5. Brown , S. A. , Sathaye , J. , Cannell , M. and Kauppi , P . 1996 . Management of Forests for Mitigation of Green-house gas emissions . In: IPCC climate change 1995 ( eds. R.T. Watson , ME. Zinyowera and R.H. Moss ). Cambridge University Press , pp. 773 – 797 .  

  6. Burke , I. C. , Lauenroth , W. K. and Coffin , D. P . 1995 . Soil organic matter recovery in semiarid grasslands: Implications for the conservation reserve program . Ecol. Appl . 5 , 793 – 801 .  

  7. Braswell , B. H. , Schimel , D. S. , Linder , E. and Moore III , B. 1997 . The response of global terrestrial eco-systems to interannual temperature variability . Science 278 , 870 – 872 .  

  8. Chang , J.-H . 1968 . Climate and agriculture: an ecological survey. Aldine, Chicago, Illinois, USA. Ciais, P., Tans, P., Trolier, M., White, J. and Francey, R. 1995. A large northern hemisphere terrestrial CO2 sink indicated by “C/12C of atmospheric CO2 . Science 269 , 1098 – 1102 .  

  9. Dai , A. , and Fung , I . 1993 . Can climate variability con-tribute to the “missing” CO2 sink? Glob. Biogeochem. Cyc . 7 , 599 – 609 .  

  10. Daly C , Neilson , R. and Philips , D . 1994 . A statistical-topographic model for mapping climatological precip-itation over mountainous terrain . J. of Applied Met-eorology 33 , 140 – 158 .  

  11. Dixon , R. , Brown , S. , Houghton , R. , Solomon , A. , Trexler , M. and Wisniewski , J . 1994 . Carbon pools and flux of global forest ecosystems . Science 263 , 185 – 190 .  

  12. Ehleringer , J. and Field , C . 1993 . Scaling physiological processes: leaf to globe . Academic Press , Inc. San Diego .  

  13. Enting , I. , Wigley , T. and Heimann , M . 1994 . Future emissions and concentrations of carbon dioxide: key ocean/atmosphere/land analyses . CSIRO Division of Atmospheric Research Technical Paper no . 31 , 120 pp .  

  14. Foster , D. R . 1985 . Vegetation development following fire in Picea Mariana (black spruce)-Pleurozium for-ests of south-eastern Labrador, Canada . J. Ecology 73 , 517 – 534 .  

  15. Foster , D. R . 1992 . Land use history (1730-1990) and vegetation dynamics in central New England, USA . J. of Ecology 80 , 753 – 772 .  

  16. Friedlingstein , P. , Fung , I. , Holland , E. , John , J. , Brass-eur , G. , Erickson , D. and Schimel , D . 1995 . On the contributionof the biosphere CO2 fertilization to the missing sink . Glob. Biogeochem. Cycle 9 , 541 – 556 .  

  17. Galloway , J. , Schlesinger , W. , Levy II, H. , Michaels, A. , and Schnoor, J. 1995. Nitrogen fixation: Anthropo-genic enhancement environmental response. Glob. Biogeochem. Cyc . 9 , 235 – 252  

  18. Gifford , R. M . 1993 . Implications of CO2 effects on vegetation for the global carbon budget. In: The global carbon cycle (ed. M. Heimann , Proceedings of the NATO Advanced Study Institute, Ii Ciocco, Italy, 8-20 September 1991, pp. 165 – 205 .  

  19. Glassy , J. and Running , S . 1994 . Validating diurnal cli-matology logic of MT-CLIM model across a climate gradient in Oregon . Ecol. Appl . 4 , 248 – 257 .  

  20. Goulden , M. , Munger , J. , Fan , S. , Daube , B. and Wofsy , S . 1996 . Exchange of carbon dioxide by a deciduous forest response to interannual climate variability . Science 271 , 1576 – 1578 .  

  21. Grace , J. , Lloyd , J. , McIntyre , J. , Miranda , A. , Men , P. , Miranda , H. , Nobre , C. , Monteith, J. Massheder, J. , Wright, I. , and Gash, J. 1995. Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia, 1992 to 1993. Science 270 , 778 – 780  

  22. Hall , C. , Tian , H. , Qi , Y. , Pontius , G. and Cornell , J . 1995 . Modeling spatial and temporal pattern of tropical land use change . J. of Biogeography 22 , 753 – 757 .  

  23. Hall , C. , Tian , H. and Qi , Y . 1993 . Responses of the biosphere to changing global environments: Evidence from the historic record of global biometabolism . World Resource Rev . 5 , 207 – 213 .  

  24. Heimann , M. , et al. 1997a . Evaluation of terrestrial carbon cycle models through simulations of the sea-sonal cycle of atmospheric CO2: First results of a model intercomparison study . Glob. Biogeochem. Cyc . 12 , 10 – 24 .  

  25. Heimann , M. , et al. 1997b . Interannual variability of CO2 exchange fluxes as simulated by four terrestrial biogeochemical models . In: The extended abstract of the 5th International Carbon dioxide Conference ( eds. Ruth Baum et al). Cairns, Australia , pp. 129 – 130 .  

  26. Holland , E. , Braswell , B. , Lamarque , J-F , Townsend , A. et al. 1997 . Variations in the predicted spatial distribu-tion of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems , J. Geophys. Res . 102 ( D13 ), 15849 – 15866 .  

  27. Houghton , R. A . 1995 . Effects of land-use change, surface temperature, and CO2 concentration on terrestrial stores of carbon . In: Biotic feedbacks in the global climatic system ( eds. G. M. Woodwell and F. T. Mackenzie ). Oxford University Press , New York , pp. 333 – 366 .  

  28. Houghton , R. A . 1996 . Terrestrial sources and sinks of carbon inferred from terrestrial data . Tellus 48B , 420 – 432 .  

  29. Hudson , R. , Gherini , S. and Goldstein , R . 1994 . Modeling the global carbon cycle: Nitrogen fertiliza-tion of the terrestrial biosphere and the “missing” CO2 sink . Glob. Biogeochem. Cyc . 8 , 307 – 333 .  

  30. Hulme , M . 1995 . A historical monthly precipitation data for global land areas from 1900 to 1994, gridded at 3.75 x 2.5 resolution. Constructed at climate research unit, University of East Anglia, Norwich, UK .  

  31. Hunt , E. , Piper , S. , Nemani , R. , Keeling , C. , Otto , R. and Running , S . 1996 . Global net carbon exchange and intra-annual atmospheric CO2 concentration pre-dicted by an ecosystem process model and three-dimensional atmospheric transport model . Glob. Bio-geochem. Cyc . 10 , 431 – 456 .  

  32. Jenny , H. , Gessell , S. and Bingham , S . 1949 . Comparative study on decomposition rates of organic matter in temperate and tropical regions , Soil Sci . 68 , 419 - 432 .  

  33. Kaduk , J.and Heimann , M . 1994 . The climate sensitivity of the Osnabruck biosphere model on the ENSO time scale . Ecol. Model . 75/76 , 239 – 256 .  

  34. Karl , T. , Easterling , D. , Knight , R. and Hughes , P . 1994 . U.S. national and regional temperature anomalies . pp. 686 - 736 . In: Trends'93: a compendium of data on global change (eds. T. A. Boden , D. P. Kaiser , R. J. Sepanski and F. W. Stoss ). ORNL/CDIAC-65. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA.  

  35. Keeling , C. D. , Chin , J. and Whorf , T . 1996 . Increased activity of northern vegetation inferred from atmo-spheric CO2 measurements . Nature 382 , 146 – 149 .  

  36. Keeling , R. F. , Piper , S. and Heimann , M . 1996 . Global and hemispheric CO2 sinks deduced from changes in atmospheric 02 concentration . Nature 381 , 218 – 221 .  

  37. Kern , S. J . 1995 . Spatial patterns of soil organic carbon in contiguous US . Soil Sci. Soc. Amer. J . 58 , 439 – 455 .  

  38. Kicklighter , D. , Melillo , J. , Peterjohn , W. , Rastetter , E. , McGuire , A. and Steudler , P . 1994 . Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils . J. Geophys. Res . 99 , 1303 – 1315 .  

  39. Kicklighter , D.W. et al. 1999 . A first order analysis of the potential role of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models . Tellus 51B , 343 – 366 .  

  40. Kindermann J. , Wurth , G. , Kohmaier , G. and Badeck , F-W . 1996 . Interannual variation of carbon exchange fluxes in terrestrial ecosystems . Glob. Biogeochem. Cyc . 10 , 737 – 755 .  

  41. King , A. W. , W. M. Post and S.D. Wullschleger . 1997 . The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2 . Climatic Change 35 , 199 – 227 .  

  42. Kittel , T. , Rosenbloom , N. , Painter , T. , Schimel , D. and VEMAP Participants . 1995 . The VEMAP integrated database for modeling United States ecosystem/ vegetation sensitivity to climate change . J. of Biogeog-raphy 22 , 857 – 862 .  

  43. Kittel , T. G. F. et al. 1997 . A gridded historical (1895-1993) bioclimate dataset for the conterminous US . Proceedings of the 10th Conference on Applied Climatology , Boston , pp. 222 – 229 .  

  44. Kramer , P. J . 1983 . Water relations of plants . Academic Press , New York , USA .  

  45. Kuchler , A. W . 1964 . Manual to accompany the map , potential natural vegetation of the conterminous US. Special Publication, No.36, American Geographical Society, New York, 143 pp.  

  46. Kuchler , A. W . 1975 . Potential natural vegetation of the US, 2nd edition (map 1 :3,168,000) . American Geo-graphical Society , New York .  

  47. Kurz , W. A. and Apps , M. J . 1996 . Retrospective assess-ment of carbon flows in Canadian boreal forests. In: Forest ecosystems, forest management and the global carbon cycle (eds. M. J. Apps and D. T. Price ). NATO ASI Series 1 : Global Environmental Change, Springer-Verlag, Heidelberg , Vol. 40 , pp. 173 – 182 .  

  48. Leemans , R. and Cramer , W . The IIASA database for mean monthly values of temperature, precipitation and cloudiness of a global terrestrial grid. International Institute for Applied Systems Analysis (IIASA) . RR- 91 – 18 .  

  49. Lieth , H . 1975 . Modelling the primary productivity of the world, In: Primary productivity of the biosphere (eds. H. Lieth and R. H. Whittaker ). Springer-Verlag , New York , pp. 237 – 263 .  

  50. Loveland , T. R. and A. S. Belward , 1997 . The IGBP-DIS global 1 km land-cover data set, DISCOVER-first results. Int. J. Remote Sensing 18 , 3291 - 3295 .  

  51. Marks , D . 1990 . The sensitivity of potential evapotran-spiration to climate change over the continental United States . In: Biospheric feedback to climate change: the sensitivity of regional trace gas emissions, evapotranspiration, and energy balance to vegetation redistribution (eds. Gucinski, H. , Marks, D. and Tuner, D. P. ). EPA/600/3-90/07.S. Environmental Protection Agency, Corvallis, IV-1-IV-31.  

  52. Marland , G. , Boden , T. , Griffin , R. , Huang , S. , Kanci-ruk , P. and Nelson , T . 1989 . Estimates of CO2 emissions from fossil fuel burning and cement manufacturing using the UN energy statistics and the US Bureau of Mines cement manufacturing data. Oak Ridge Natl. Lab. Rep., ORNL/CDIAC 25 .  

  53. McGuire , A. D. , Melillo , J. , Joyce , L. , Kicklighter , D. , Grace , A ., Moore III, B. and Vorosmarty, C. 1992. Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Glob. Biogeochem. Cyc . 6 , 101 – 124  

  54. McGuire , A. D. , Joyce , L. , Kicklighter , D. , Melillo , J. , Esser , G. and Vorosmarty , C . 1993 . Productivity response of climax temperate forests to elevated tem-perature and carbon dioxide: a North American com-parison between two global models . Clim. Change 24 , 287 – 310 .  

  55. McGuire , A. D. , Melillo , J. , Kicklighter , D. and Joyce , L . 1995 . Equilibrium responses of soil carbon to cli-mate change: Empirical and process-based estimates . J. of Biogeography 22 , 785 – 796 .  

  56. McGuire , A. D. , Melillo , J. , Kicklighter , D. , Pan , Y. , Xiao , X. , Helfrich , J. , Moore III , B. , Vorosmarty , C. and Schloss , A . 1997 . Equilibrium response of global primary production and carbon storage to doubled atmospheric carbon dioxide: sensitivity to changes in vegetation nitrogen concentration . Glob. Biogeochem. Cyc . 11 , 173 – 189 .  

  57. Melillo , J. M. , Aber , J. and Muratore , J . 1982 . Nitrogen and lignin control of hardwood leaf litter decomposi-tion dynamics . Ecology 63 , 621 – 626 .  

  58. Melillo , J. M. and Gosz , J . 1983 . Interactions of biogeo-chemical cycles in forest ecosystems . In: The major biogeochemical cycles and their interactions ( eds. B. Bolin and R. B. Cook ). John Wiley and Sons , New York , pp. 177 – 222 .  

  59. Melillo , J. M , Fruci , J. , Houghton , R ., Moore III, B. and Skole, D. 1988. Land-use change in the Soviet Unio n  

  60. between 1850 and 1980: causes of a net relase of CO, to the atmosphere . Tellus 40B , 116 – 128 .  

  61. Melillo , J. M. , Steudler , P. , Aber , J. and Bowden , R . 1989 . Atmospheric deposition and nutrient cycling. In: Exchange of trace gases between terrestrial ecosystems and the atmosphere (eds. M. O. Andreae and D. S. Schimel ). John Wiley & Sons, Ltd., Dahlem, Konfer-enzen, pp. 263 – 280 .  

  62. Melillo , J. M. , Callaghan , T. , Woodward , F. , Salati , E. and Sinha , S . 1990 . Effects of Ecosystems, In: Climate change: the IPCC scientific assessment (eds. Houghton, J. T. et al). Cambridge University Press, Cambridge, New York, pp. 283 – 310 .  

  63. Melillo , J. M. , McGuire , A. , Kicklighter, D., Moore III, B., Vorosmarty, C. and Schloss, A. 1993. Global cli-mate change and terrestrial net primary production. Nature 363 , 234 – 240  

  64. Melillo , J. M. , Kicklighter, D., McGuire, A., Peterjohn, W. and Newkirk, K. 1995a. Global change and its effects on soil organic carbon stocks. In: Dahlem Con-ference Proceedings . John Wiley and Sons, New York, pp. 175 – 189 .  

  65. Melillo , J. M . 1995b . Human influences on the global nitrogen budget and their implications for the global carbon budget . In: Toward global planning of sustainable use of the Earth: development of global eco-engineering ( eds. Murai A. and M. Kimura ). Elsevier , Amsterdam, The Netherlands .  

  66. Melillo , J. M. , Prentice , I. , Farquhar , G. , Schulze , E.-D. and Sala, O., 1996. Terrestrial biotic responses to envir-onmental change and feedbacks to climate, In: Climate change 1995: the science of climate change ( eds. J. T. Houghton et al). Cambridge University Press, pp. 444 – 481 .  

  67. Mooney , H. A. , Drake , B. G. , Luxmoore , R. L. , Oechel , W. C. and Pitelka , L. F . 1991 . Predicting ecosystem responses to elevated CO2 concentrations . BioScience 41 , 96 – 104 .  

  68. NCAR/Navy . 1984 . Global 10-min elevation data . Digital tape available through National Ocean and Atmo-spheric Administration, National Geophysical Data Center, Boulder , Colorado , USA .  

  69. NCDC (National Climate Data Center) . 1992. 1961-1990 monthly station normals tape . US Depart-ment of Commerce, data tape TD 9641 .  

  70. Nicholls , N. , Gruza , G.V. , Jouzel , J. , Karl , T. , Ogallo , L. , Parker , D . 1996 . Observed climate variability and change. In: Climate change 1995: the science of climate change (eds. J. T. Houghton et al). Cambridge Univer-sity Press, pp. 132 – 192 .  

  71. Pan , Y. , McGuire , A. , Kicklighter , D. and Melillo , J . 1996 . The importance of climate and soils for estimates of net primary production: a sensitivity analysis with the terrestrial ecosystem model . Global Change Biol-ogy 2 , 5 – 23 .  

  72. Pan , Y. , Melillo , J. , McGuire , A. , Kicklighter , D. , Pit-elka , L. , Hibbard , K. , Pierce , L. , Running , S. , Ojima , D. , Parton , W. , Schimel , D. and other VEMAP members. Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simula-tions by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) . Oecologia 114 , 389 – 404 .  

  73. Parton , W. J. , Scurlock , J. , Ojima , D. , Gilmanov , T. , Scholes, R., Schimel, D., Kirchner, T., Menaut, J.-C., Seastedt, T., Garcia Moya, E, Apinan Kamnalrut and Kinyamario, J. I. 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Glob. Biogeochem. Cyc . 7 , 785 – 809  

  74. Pastor , J. , and Post , W . 1986 . Influence of climate, soil moisture and succession on forest soil carbon and nutrient cycles . Biogeochem . 2 , 3 – 27 .  

  75. Peterjohn , W. T. , Melillo , J. , Steudler , P. , Newkirk , K. , Bowles , E. and Aber , J . 1994 . Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures . Ecol. Appl . 4 , 617 – 625 .  

  76. Pitelka , L.F. and the Plant Migration Workshop Group. 1997. Plant migration and climate change. American Scientist 85 , 464 – 473  

  77. Pickett , S. and White , P . 1985 . The ecology of natural disturbance and patch dynamics . Academic Press , New York .  

  78. Post , W. M. , King , A. and Wullschleger , S . 1997 . Histor-ical variations in terrestrial biospheric carbon storage . Glob. Biogeochem. Cyc . 11 , 99 – 109 .  

  79. Raich , J. W. , Rastetter , E. , Melillo , J. , Kicklighter , D. , Steudler , P. , Peterson , B. , Grace , A ., Moore III, B. and Vorosmarty, C. 1991. Potential net primary productiv-ity in South America: Application of a global model. Ecol. Appl . 1 , 399 – 429  

  80. Rastetter , E. B. , Agren , G. I. and Shaver , G. R . 1997 . Responses of N-limited ecosystems to increased CO2: A balanced-nutrition, coupled-element-cycles model . Ecol. Appl . 7 , 444 – 460 .  

  81. Running , S. W. , Nemani , R. and Hungerford , R . 1987 . Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis . Can. J. of For. Res . 17 , 472 – 483 .  

  82. Running , S. W. , and Hunt Jr., E.R. % 1993 . Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models . In: Scaling processes between leaf and land-scape levels ( eds. J. R. Ehleringer and C. Field ). Academic Press , Orlando , pp. 141 – 158 .  

  83. Sarmiento , J. L. and Sundquist , E. T . 1992 . Revised budget for the oceanic uptake of anthropogenic carbon dioxide . Nature 356 , 589 – 593 .  

  84. Schimel , D. S. Braswell , B. , Holland , E. , McKeown , R. , Ojima , D. , Painter , T. , Parton , W. and Townsend , A . 1994 . Climatic, edaphic and biotic controls over stor-age and turnover of carbon in soils . Glob. Biogeochem. Cyc . 8 , 279 – 293 .  

  85. Schimel , D. S . 1995 . Terrestrial ecosystems and the carbon cycle . Global Change Biology 1 , 77 – 91 .  

  86. Schimel , D. S. , et al. 1996a. Radiative forcing of climate change. In: Climate change 1995: the science of climate change ( eds. J. T. Houghton etal.). Cambridge Univer-sity Press. pp. 67 – 131 .  

  87. Schimel , D. S. , Braswell , B. , McKeown , R. , Ojima, D., Parton, W. and Pulliam, W. 1996b. Climate and nitro-gen controls on the geography and timescales of terrestrial biogeochemical cycling. Glob. Biogeochem. Cyc . 10 , 677 – 692  

  88. Schimel , D. S. etal. 1997 . Spatial variability in ecosystem processes at the continental scale: models, data and the role of disturbance . Ecol. Monog . 67 , 251 – 271 .  

  89. Schindler , D. W. , and Bayley , S. E . 1993 . The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition . Glob. Biogeochem. Cyc . 7 , 717 – 734 .  

  90. Schlesinger , W. H . 1991 . Biogeochemistry: an analysis of global change . Academic , San Diego , Calif .  

  91. Schulze , E.-D. , DeVries , W. , Hauhs , M. , Rosen , K. , Ras-mussen , L ., Tann, 0.-C. and Nilsson, J. 1989. Critical loads for nitrogen deposition in forest ecosystems. Water, Air, and Soil Pollut . 48 , 451 – 456 .  

  92. Smith , T. M. , and Shugart , H. H . 1993 . The transient response of terrestrial carbon storage to a perturbed climate . Nature 361 , 523 – 526 .  

  93. Solomon , A. M . 1986 . Transient response of forests to CO2-induced climate change: simulation modeling experiments in eastern North America . Oecologia 68 , 567 – 579 .  

  94. Tans , P. , Fung , I. and Enting , I . 1995 . Storage versus flux budgets: The terrestrial uptake of CO2 during the 1980s . In: Biotic feedbacks in the global climatic system ( eds. G. M. Woodwell and F. T. Mackenzie ). Oxford University Press , New York , pp. 351 – 374 .  

  95. Tian , H. and Qi , Y . 1990 . An analysis on ecological succession processes. In: Advance in modern ecology (ed. Ma Shijun ). Science Press , Beijing , pp. 90 - 100 .  

  96. Tian , H ., Xu , H . and Hall , C . 1995 . Pattern and change of a boreal forest landscape in the northeastern China . Water, Air and Soil Pollut . 82 , 465 – 476 .  

  97. Tian , H. , Melillo , J.M. , Kicklighter , D.W. , McGuire , AD. , Helfrich , J ., Moore III , B . and Vörösmarty , C.J . 1998a . Effect of interannual climate variability on carbon storage in Amazonian ecosystems. Nature 396 , 664 – 667  

  98. Tian , H. , Hall , C. and Qi , Y . 1998b . Modeling primary productivity of the terrestrial biosphere in changing environments: Toward a dynamic biosphere model . Critical Reviews in Plant Science 17 , 541 – 557 .  

  99. Thompson , M. , Randerson , J. , Malmstrom , C. and Field , C . 1996 . Change in net primary production and hetero-trophic respiration: how much is necessary to sustain the terrestrial carbon sink? Glob. Biogeochem. Cyc . 10 , 711 – 726 .  

  100. Townsend , A.R. ., Braswell, B., Holland, E. and Penner, J. 1996. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen. Ecol. Appl . 6 , 806 – 814  

  101. Trenberth , K. and Hurrell , J . 1994 . Decadal atmosphere-ocean variations in the Pacific. Clim. Dyn . 9 , 303 – 319 .  

  102. Turner II, B. , Clark , W. , Kates , R. , Richards , J. , Mathews , J. and Meyer , W. 1990. The Earth as transformed by human action. Cambridge University Press , Cambridge .  

  103. Turner D. P. , Koerper , G. , Harmon , M. and Lee , J . 1995 . A carbon budget for forests of the conterminous United States . Ecol. Appl . 5 , 421 – 436 .  

  104. VEMAP Members . 1995 . Vegetation/Ecosystem Modeling and Analysis Project ( VEMAP): a compar-ison of biogeography and biogeochemistry models in the context of global climate change . Glob. Biogeo-chem. Cyc . 9 , 407 – 437 .  

  105. Vitousek , P. M. and Howarth , R. W . 1991 . Nitrogen limitation on land and in the sea: how can it occur? Biogeochem . 13 , 87 – 115 .  

  106. Vorosmarty , C. J ., Moore III, B., Grace, A., Gildea, M., Melillo, J., Peterson, B., Rastetter, E. and Steudler, P. 1989. Continental scale models of water balance and fluvial transport: an application to South America, Glob. Biogeochem. Cyc . 3 , 241 – 265  

  107. Wofsy , S. , Goulden , M. , Munger , J. , Fan , S-M. , Bakwin , P. , Daube , B. , Bassow , S. and Bazzaz. F . 1993 . Net exchange of CO2 in a mid-latitude forest . Science 260 , 1314 – 1317 .  

  108. Woodward , F. I. , Smith , T. M. and Emanuel , W. R . 1995 . A global primary productivity and phytogeography model . Glob. Biogeochem. Cyc . 9 , 471 – 490 .  

  109. Woodwell , G. M . 1995 . Will the warming speed the warning? In: Biotic feedbacks in the global climatic system (eds. G. M. Woodwell and F. T. Mackenzie ). Oxford University Press , New York .  

  110. Wullschleger , S.D. ., Post, W. and King, A. 1995. On the potential for a CO2 fertilization effect in forests: estim-ates of the biotic growth factor based on 58 controlled-exposure studies, In: Biotic feedbacks in the global climatic system ( eds. G. M. Woodwell and F. T. Mack-enzie ). Oxford University Press, New York, pp. 85 – 107 .  

  111. Xiao , X. , Kicklighter, D., Melillo, J., McGuire, A., Stone, P. and Sokolov, A. 1997. Linking a global terrestrial biogeochemical model and a 2-D climate model: implications for the global carbon budget. Tellus 49B , 18 – 37  

comments powered by Disqus