Start Submission Become a Reviewer

Reading: Biomass of forest stands under climatic change: a German case study with the Frankfurt biosp...

Download

A- A+
Alt. Display

Original Research Papers

Biomass of forest stands under climatic change: a German case study with the Frankfurt biosphere model (FBM)

Authors:

Christof Häger ,

Institute of Theoretical and Physical Chemistry, Johann Wolfgang Goethe-University, Marie Curie Str. 11, D-60439 Frankfurt/Main, DE
X close

Gudrun Würth,

Institute of Theoretical and Physical Chemistry, Johann Wolfgang Goethe-University, Marie Curie Str. 11, D-60439 Frankfurt/Main, DE
X close

Gundolf H. Kohlmaier

Institute of Theoretical and Physical Chemistry, Johann Wolfgang Goethe-University, Marie Curie Str. 11, D-60439 Frankfurt/Main, DE
X close

Abstract

In this contribution, we perform a case study of the German forests. We couple the Frankfurt biosphere model (FBM) with a model of the age class development (AGEDYN). The coupled model is applied to simulate the temporal development of carbon pools in German forests under the influence of climate change taking into account changes in the age class structure. In the base case, the growth of forest stands is simulated using a temporally averaged climate dataset, being representative for the contemporary climate conditions. To assess the sensitivity of forest growth to changes in environmental conditions, the FBM is run in several scenarios. In these simulations the effects both of climate change and of the direct effect of increased levels of atmospheric CO2 on photosynthesis (CO2 fertilization) on forest growth are assessed. In another simulation run with the FBM both effects — climate change and CO2 fertilization — are combined. In simulations under present day’s climate conditions a good agreement is gained between simulation results and statistical data of the present standing stock carbon density of Germany’s forests. A pure climate change leads to a decrease of the annual increments as well as to the climax standing stocks. The negative effect of climate change alone is overcompensated by enhanced photosynthesis in the simulations with combined climate change and CO2 fertilization. In the transient case, the coupled model is used in two scenarios describing first a continuation of present day’s climate conditions and second a transient climate change from present conditions (1990) to 2 × CO2 conditions in 2090. Here, the simulations indicate that changes in the forest’s age class structure can have a stronger influence on the future carbon balance of the forests in the considered region than the combined efffect of climate change and CO2 fertilization.

How to Cite: Häger, C., Würth, G. and Kohlmaier, G.H., 1999. Biomass of forest stands under climatic change: a German case study with the Frankfurt biosphere model (FBM). Tellus B: Chemical and Physical Meteorology, 51(2), pp.385–401. DOI: http://doi.org/10.3402/tellusb.v51i2.16309
  Published on 01 Jan 1999
 Accepted on 29 Sep 1998            Submitted on 8 Dec 1997

References

  1. Bundesministerium ffir Ernahrung, Landwirtschaft und Forsten (BML) 1992. Bundeswaldinventur 1986-1990, Inventurbericht und Übersichtstabellen für das Bundes-gebiet nach dem Gebietsstand bis zum 03.10.1990 einsch-liefilich Berlin (West). Vols. I. and II.  

  2. Bundesministerium ffir Ernahrung, Landwirtschaft und Forsten (BML) 1996. Das potentielle Rohholzaufkom- men in Deutschland bis zum Jahr 2020 — Ergeb-nisiiberblick.  

  3. Burschel , P. , Kfirsten , E. and Larson , B. C . 1993 . Die Rolle von Wald und Forstwirtschaft im Kohlen-stoffhaushalt. Eine Betrachtung ffir die Bundesrepub-lik Deutschland. Forstliche Forschungsberichte 126 , Munchen .  

  4. Cao , M. and Woodward , F. I . 1998 . Dynamic response of terrestrial ecosystem carbon cycling to global climate change . Nature 393 , 249 – 252 .  

  5. Cubasch , U. , Hasselmann , K. , Hock , H. , Meier-Reimer , E. , Mikolajewicz , U. , Sauter , B. and Sausen , R . 1992 . Time-dependent greenhouse warming computa-tions with a coupled ocean—atmosphere model . Cli-mate Dynamics 8 , 55 – 69 .  

  6. Cubasch , U. , Waszekewitz , J. , Hegerl , G. and Perlwitz , J . 1995 . Regional climate changes as simulated in the time-slice experiments . Climatic Change 31 , 273 – 304 .  

  7. FAO 1992. The forest resources of the temperate zones . The UN-ECE/FAO 1990 Forest Resource Assessment Vol. 1 , General Forest Resource Information. New York.  

  8. Fung , I. Y. , Tucker , C. J. and Prentice , K. C . 1987 . Application of advanced very high resolution radio-meter vegetation index to study atmosphere—biosphere exchange of CO2 . J. Geophys. Res . 92 ( D3 ), 2999 – 3015 .  

  9. Hager , Ch. , Wfirth , G. , Wagner , U. and Kohlmaier , G. H . 1996 . Responses in the growth of the northern forests to a CO2-induced climatic change, as evaluated by the Frankfurt biosphere model (FBM) . World Resource Review 8 , 178 – 197 .  

  10. Janecek , A. , Benderoth , G. , Lfideke , M. K. B. , Kinderm-ann , J. and Kohlmaier , G. H . 1989 . Model of the seasonal and perennial carbon dynamics in deciduous-type forests controlled by climatic variables . Ecological Modelling 49 , 101 – 124 .  

  11. Kaduk , J. and Heimann , M . 1995 . A prognostic pheno-logy scheme for global models of the terrestrial bio-sphere . Climate Research , 6 , 1 – 19 .  

  12. Kicklighter , D. W. , Bruno , M. , Donges , S. , Esser , G. , Heimann , M. , Helfrich , J. , Ift , F. , Joos , F. , Kaduk , J .,  

  13. Kohlmaier , G. H. , McGuire , A.D. ., Melillo, J. M., Meyer, R., Moore III, B., Nadler, A., Prentice, C., Saul', W., Schloss, A., Sitch, S., Wittenberg, U. and Wirth, G. 1998. A first order analysis of the potential of CO2, fertilisation to affect the carbon budget: A comparison study of four terrestrial biosphere models. Tellus 51B , 343 – 366  

  14. Kindermann , J. , Lfideke , M. K. B. , Badeck , F.-W. , Otto , R.D. ., Klaudius, A., Hager, Ch., Wfirth, G., Lang, T., Donges, S., Habermehl, S. and Kohlmaier, G. H. 1993. Structure of a global carbon exchange model for the terrestrial biosphere: The Frankfurt biophere model (FBM). Water, Air and Soil Pollution 70 , 675 – 684  

  15. Kindermann , J. , Wfirth , G. , Kohlmaier , G. H. and Badeck , F.-W . 1996 . Interannual variation of carbon exchange fluxes in terrestrial ecosystems . Global Bio-geochemical Cycles 10 , 737 – 755 .  

  16. Kirschbaum , M. U. F. and Farquhar , G. D . 1987 . Investi-gation of the CO2 dependence of quantum yield and respiration in Eucalyptus pauciflora . Plant Physiol . 83 , 1032 – 1036 .  

  17. Kohlmaier , G. H. , Hager , Ch. , Wfirth , G. , Lfideke , M. K. B. , Ramge , P. , Badeck , F.-W. , Kindermann , J. and Lang , T . 1995a . Effects of the age class distribu-tions of the temperate and boreal forests on the global CO2-source-sink function . Tellus 47B , 212 – 231 .  

  18. Kohlmaier , G. H. , Hager , Ch. , Nadler , A. , Wfirth , G. and Lfideke , M. K. B . 1995b . Global carbon dynamics of higher latitude forests during an anticipated climate change: ecophysiological versus biome-migration view . Water, Air and Soil Pollution 82 , 455 – 464 .  

  19. Kohlmaier , G. H. , Badeck , F.-W. , Otto , R.D. ., Hager, Ch., Donges, S., Kindermann, J., Wiirth, G., Lang, T., Jakel, U., Nadler, A., Klaudius, A., Ramge, P., Habermehl, S. and Lfideke, M. K. B. 1997. The Frankfurt biosphere model. A global process ori-ented model for the seasonal and long-term CO2 exchange between terrestrial ecosystems and the atmo-sphere. (II) Global results for potential vegetation in an assumed equilibrium state. Climate Research 8 , 61 – 87  

  20. Kohlmaier , G. H. , Hager , Ch. , Ift , F. , Wiirth , G. , Joos , F. and Bruno , M . 1998 . Future development of the carbon cycle: The role of the biota/forests within the IPCC stabilization szenarios. In: Carbon dioxide mit-igation in forestry and wood industry (eds. Kohlmaier, G. H. , Weber, M. and Hougton, R. A. ). Springer, Heid-elberg, 269 – 291 .  

  21. Kurz , W. and Apps , M. J . 1995 . An analysis of future carbon budgets of Canadian boreal forests . Water, Air and Soil Pollution 82 , 321 – 331 .  

  22. Li , C. and Apps , M. J . 1996 . Effects of contagious disturb-ance on forest temporal dynamics . Ecological Model-ling 87 , 143 – 151 .  

  23. Leemans , R. and Cramer , W. P . 1991 . The IIASA data-base for monthly values of temperature, precipitation and cloudiness on a global terrestrial grid. Research Report RR-91-18, International Institute for Applied Systems Analysis, Laxenburg, Austria .  

  24. Leslie , P. H . 1945 . On the use of matrices in certain population mathematics . Biometrika 33 , 183 – 212 .  

  25. Leslie , P. H . 1948 . Some further notes on the use of matrices in population mathematics . Biometrika 35 , 213 – 245 .  

  26. Lewis , E. G . 1942 . On the generation and growth of a population . Sankhya 6 , 93 – 96 .  

  27. Liideke , M. K. B. , Badeck , F.-W. , Otto , R. D. , Hager , Ch. , Dönges , S. , Kindermann , J. , WiIrth , G. , Lang , T. , Mel , U. , Klaudius , A. , Ramge , P. , Habermehl , S. and Kohlmaier , G. H . 1994 . The Frankfurt biosphere model. A global process oriented model for the sea-sonal and long-term CO2 exchange between terrestrial ecosystems and the atmosphere. Part 1: Model descrip-tion and illustrating results for the vegetation types cold deciduous and boreal forests . Climate Research 4 , 143 – 166 .  

  28. Lfideke , M. K. B. , Donges , S. , Otto R. D. , Kinderm-ann , J. , Badeck , F.-W. , Ramge , P. , Mel , U. and Kohlmaier , G. H . 1995 . Responses in NPP and carbon stores of the northern biomes to a CO2-induced cli-matic change as evaluated by the Frankfurt biosphere model (FBM) . Tellus 47B , 191 – 205 .  

  29. Liideke , M. K. B. , Ramge , P. H. and Kohlmaier , G. H . 1996 . The use of satellite NDVI data for the validation of global vegetation phenology models: application to the Frankfurt biosphere model . Ecological Modelling 91 , 255 – 270 .  

  30. Lurin , B. , Cramer , W. , Moore III, B. and Rasool , S. I . 1994 . Global terrestrial net primary productivity . Global Change Newsletter ( IGBP) 19 , 191 – 205 .  

  31. Matthews , E . 1983 . Global vegetation and land use: new high-resolution data bases for climate studies . J. Clim. Appl. Meteor . 22 , 474 – 487 .  

  32. Matthews , E . 1984 . Global inventory of pre-agricultural and present biomass . Progress in Biometeorology 3 , 237 – 246 .  

  33. Melillo , J. M. , Prentice , I. C. , Farquhar , G. D. , Schulze , E.-D. and Sala, 0. E. 1996. Terrestrial biotic responses to environmental change and feedbacks to climate. In: Climate change 1995 ( eds. Houghton, J. T. Meira Filho, L. G. , Callander, B. A. , Harris, N. , Kattenberg, A. and Maskell, K. ). Cambridge University Press, Cam-bridge, 445 – 481 .  

  34. Mohr , H . 1994 . Stickstoffeintrag als Ursache neuartiger Waldschaden. Spektrum der Wissenschaft 1 , 48 - 53 .  

  35. Plöchl , M . and Cramer , W . 1995 . Coupling global models of vegetation structure and ecosystem processes. An example from arctic and boreal ecosystems . Tellus 47B , 240 – 250 .  

  36. Raich , J. W. , Rastetter , E. B. , Melillo , J. M. , Kicklighter , D. W. , Steudler , P. A. , Peterson , B. J. , Grace , A. L. , Moore III, B. and Vörösmarty , C. J . 1991 . Potential net primary productivity in South America: applica-tion of a global model . Ecological Applications 1 , 399 – 429 .  

  37. Roeckner , E. , Arpe , K. , Beugtsson , L. , Brinkop , S. , Dumenil , S. , Kirk , E. , Lunheit , F. , Esch , M. , Pon-ater , M. , Rochel , B. , Sausen , R. , Schlese , U. , Schub-ert , S. , Windelband , M . 1992 . Simulation of the present-day climate with the ECHAM model: impact of model physics and resolution. Report des Max-Planck-Institutes far Meteorologie 93 (Hamburg). Schober , R. 1979. Ertragstafeln wichtiger Baumarten bei verschiedener Durchforstung. 2. unverand. Auflage , J. D. Sauerlander , Frankfurt am Main .  

  38. Spiecker , H. , Mielikainen , K. , Kohl , M. and Skovsgaard , J. P. (eds.) 1996 . Growth trends in European forests. EFI Research Report No. 5, Springer Verlag, Berlin. Thornley, J. H. M. 1970. Respiration, growth and main-tenance in plants . Nature 227 , 304 – 305 .  

  39. Thornthwaite , C. W . 1948 . An approach toward a rational classification of climate . Geographical Review 38 , 55 – 94 .  

  40. Usher , M. B . 1966 . A matrix approach to the manage-ment of renewable resources, with special reference to selection forests . J. Appl. Ecol . 3 , 355 – 367 .  

  41. Usher , M. B . 1972 . Developments in the Leslie matrix model. In: Mathematical models in ecology (ed. Jeffers N. R. ). Blackwell, Oxford.  

  42. Wagner , A. U . 1995 . Differenzierung der Wachstums- und Erhaltungsrespiration im Anschlufi and die Photosyn-theseprozesse von Pflanzen als Modellbaustein far das Frankfurter Biosphtirenmodell. Diplomarbeit Universi-tat Frankfurt .  

  43. Warnant , P. , Francois , L. , Strivay , D. and Gerard , J. C . 1994 CARAIB. A global model of terrestrial biological productivity . Global Biogeochemical Cycles 8 , 255 – 270 .  

  44. Wfirth , G. , Hager , Ch. and Kohlmaier , G. H . 1997 . The Frankfurt biosphere model (FBM): Regional valida-tion using German forest yield tables and inventory data and extrapolation to 2 x CO2 climate. In: Pro-ceedings of the Workshop on Carbon mitigation poten-tials of forestry and wood industry (eds. Kohlmaier, G. H. , Weber, M. and Houghton, R. ). Springer Verlag, Heidelberg, 293 – 321 .  

comments powered by Disqus