Start Submission Become a Reviewer

Reading: A first-order analysis of the potential rôle of CO2 fertilization to affect the global ...

Download

A- A+
Alt. Display

Original Research Papers

A first-order analysis of the potential rôle of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models

Authors:

David W. Kicklighter ,

The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, US
X close

Michele Bruno,

Climate and Environmental Physics, University of Bern, Sidlerstr.5, CH-3012 Bern, CH
X close

Silke Dönges,

Institut für Physikalische und Theoretische Chemie, J.W. Goethe-Universität, Marie-Curie-Str. 11, D-60439 Frankfurt/Main, DE
X close

Gerd Esser,

Institut für Pflanzenökologie, Justus-Liebig-Universität, Heinrich-Buff-Ring 38, D-35392 Gießen, DE
X close

Martin Heimann,

Max-Planck-Institut für Meteorologie, Bundesstraße 55, D-20146 Hamburg, DE
X close

John Helfrich,

The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, US
X close

Frank Ift,

Institut für Physikalische und Theoretische Chemie, J.W. Goethe-Universität, Marie-Curie-Str. 11, D-60439 Frankfurt/Main, DE
X close

Fortunat Joos,

Climate and Environmental Physics, University of Bern, Sidlerstr.5, CH-3012 Bern, CH
X close

Jörg Kaduk,

Max-Planck-Institut für Meteorologie, Bundesstraße 55, D-20146 Hamburg, DE
X close

Gundolf H. Kohlmaier,

Institut für Physikalische und Theoretische Chemie, J.W. Goethe-Universität, Marie-Curie-Str. 11, D-60439 Frankfurt/Main, DE
X close

A. David McGuire,

US Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska, Fairbanks, AK 99775, US
X close

Jerry M. Melillo,

The Ecosystems Center, Marine Biological Laboratory, Woods Hole, Massachusetts 02543, US
X close

Robert Meyer,

Climate and Environmental Physics, University of Bern, Sidlerstr.5, CH-3012 Bern, CH
X close

Berrien Moore III,

Complex Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824-3525, US
X close

Andreas Nadler,

Institut für Physikalische und Theoretische Chemie, J.W. Goethe-Universität, Marie-Curie-Str. 11, D-60439 Frankfurt/Main, DE
X close

I. Colin Prentice,

Global Systems Group, Department of Ecology, University of Lund, Sölvegatan 37, S-223 62 Lund, SE
X close

Walter Sauf,

US Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska, Fairbanks, AK 99775, US
X close

Annette L. Schloss,

Complex Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire 03824-3525, US
X close

Stephen Sitch,

Global Systems Group, Department of Ecology, University of Lund, Sölvegatan 37, S-223 62 Lund, SE
X close

Uwe Wittenberg,

Institut für Pflanzenökologie, Justus-Liebig-Universität, Heinrich-Buff-Ring 38, D-35392 Gießen, DE
X close

Gudrun Würth

Institut für Physikalische und Theoretische Chemie, J.W. Goethe-Universität, Marie-Curie-Str. 11, D-60439 Frankfurt/Main, DE
X close

Abstract

We compared the simulated responses of net primary production, heterotrophic respiration, net ecosystem production and carbon storage in natural terrestrial ecosystems to historical (1765 to 1990) and projected (1990–2300) changes of atmospheric CO2 concentration of four terrestrial biosphere models: the Bern model, the Frankfurt Biosphere Model (FBM), the High-Resolution Biosphere Model (HRBM) and the Terrestrial EcosystemModel (TEM). The results of the model intercomparison suggest that CO2 fertilization of natural terrestrial vegetation has the potential to account for a large fraction of the so-called “missing carbon sink” of 2.0 Pg C in 1990. Estimates of this potential are reduced when the models incorporate the concept that CO2 fertilization can be limited by nutrient availability. Although the model estimates differ on the potential size (126 to 461 Pg C) of the future terrestrial sink caused by CO2 fertilization, the results of the four models suggest that natural terrestrial ecosystems will have a limited capacity to act as a sink of atmospheric CO2 in the future as a result of physiological constraints and nutrient constraints on NPP. All the spatially explicit models estimate a carbon sink in both tropical and northern temperate regions, but the strength of these sinks varies over time. Differences in the simulated response of terrestrial ecosystems to CO2 fertilization among the models in this intercomparison study reflect the fact that the models have highlighted different aspects of the effect of CO2 fertilization on carbon dynamics of natural terrestrial ecosystems including feedback mechanisms. As interactions with nitrogen fertilization, climate change and forest regrowth may play an important role in simulating the response of terrestrial ecosystems to CO2 fertilization, these factors should be included in future analyses. Improvements in spatially explicit data sets, whole-ecosystem experiments and the availability of net carbon exchange measurements across the globe will also help to improve future evaluations of the role of CO2 fertilization on terrestrial carbon storage.

How to Cite: Kicklighter, D.W., Bruno, M., Dönges, S., Esser, G., Heimann, M., Helfrich, J., Ift, F., Joos, F., Kaduk, J., Kohlmaier, G.H., McGuire, A.D., Melillo, J.M., Meyer, R., Moore III, B., Nadler, A., Prentice, I.C., Sauf, W., Schloss, A.L., Sitch, S., Wittenberg, U. and Würth, G., 1999. A first-order analysis of the potential rôle of CO2 fertilization to affect the global carbon budget: a comparison of four terrestrial biosphere models. Tellus B: Chemical and Physical Meteorology, 51(2), pp.343–366. DOI: http://doi.org/10.3402/tellusb.v51i2.16303
  Published on 01 Jan 1999
 Accepted on 16 Nov 1998            Submitted on 25 Nov 1997

References

  1. Bacastow , R. and Keeling , C. D . 1973 . Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: changes from Al) 1700 to 2070 as deduced from a geochemical model. In: Carbon and the biosphere, CONF-720510 (eds. Woodwell, G. M. and Pecan, E. V. ). Atomic Energy Commission, Washington, DC, 86 – 135 .  

  2. Baldocchi , D. , Valentini , R. , Running , S. , Oechel , W. and Dahlman , R . 1996 . Strategies for measuring and mod-elling carbon dioxide and water vapour fluxes over terrestrial ecosystems . Glob. Change Biol . 2 , 159 – 168 .  

  3. Bazzaz , F. A . 1990 . The response of natural ecosystems to the rising global CO2 levels . Annu. Rev. Ecol. Syst . 21 , 167 – 176 .  

  4. Bender , M. , Ellis , T. , Tans , P. , Francey , R. and Lowe , D . 1996 . Variability in the 02/N2 ratio of southern hemi-sphere air, 1991-1994: implications for the carbon cycle . Glob. Biogeochem. Cycles 10 , 9 – 21 .  

  5. Black , T. A. , den Hartog , G. , Neumann , H. H. , Blanken , P. D. , Yang , P. C. , Russell , C. , Nesic , Z. , Lee , X. , Chen , S. G. , Staebler , R. and Novak , M. D . 1996 . Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal aspen forest . Glob. Change Biol . 2 , 219 – 229 .  

  6. Braswell , B. H. , Schimel , D. S. , Linder , E. and Moore III , B. 1997 . The response of global terrestrial ecosystems to interannual temperature variability . Sci-ence 278 , 870 – 872 .  

  7. Bruno , M. and Joos , F . 1997 . Terrestrial carbon storage during the past 200 years: a monte carlo analysis of CO2 data from ice core and atmospheric measure-ments . Glob. Biogeochem. Cycles 11 , 111 – 124 .  

  8. Cramer , W. , Kicklighter , D. W. , Bondeau , A. , Moore III , B. , Churkina , G. , Nemry , B. , Ruimy , A. , Schloss , A. and the participants of “Potsdam '95”. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Change Biol ., in press .  

  9. Dai , A. and Fung , I. Y . 1993 . Can climate variability contribute to the “missing” CO2 sink? Glob. Biogeo-chem. Cycles 7 , 599 – 609 .  

  10. D'Arrigo , R. D. and Jacoby , G. C . 1993 . Tree-growth-climate relationships at the northern boreal forest tree line of North America: evaluation of potential response to increasing carbon dioxide . Glob. Biogeo-chem. Cycles 7 , 525 – 535 .  

  11. Dixon , R. , Brown , S. , Houghton , R. , Solomon , A ., Tellus 51B (1999), 2 Trexler, M. and Wisniewski, J. 1994. Carbon pools and flux of global forest ecosystems. Science 263 , 185 – 190  

  12. Eamus , D. and Jarvis , P. G . 1989 . The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests . Adv. Ecol. Res . 19 , 1 – 55 .  

  13. Enting , I. G. , Wigley , T. M. L. and Heimann , M . 1994 . Future emissions and concentrations of carbon dioxide: Key ocean/atmosphere/land analyses. CSIRO Division of Atmospheric Research Technical Paper No. 31. Esser, G. 1987. Sensitivity of global carbon pools and fluxes to human and potential climate impacts . Tellus 39B , 24 – 60 .  

  14. Esser , G. , Hoffstadt , J. , Mack , F. and Wittenberg , U . 1994 . High-resolution biosphere model (HRBM) - Documentation model version 3.00.00 . Mitteilungen aus dem Institut ffir Pflanzenökologie der Justus-Liebig-Universitfit Giessen. Vol. 2 (ed. Esser G. ). Giessen, Germany, 70 pp.  

  15. Esser , G . 1995 . Contribution of monsoon Asia to the carbon budget of the biosphere, past and future . Veget-atio 121 , 175 – 188 .  

  16. Fan , S. M. , Wofsy , S. C. , Bakwin , P. S. , Jacob , D. J. and Fitzjarrald , D. R . 1990 . Atmosphere-biosphere exchange of CO2 and 03 in the central Amazon forest. J. Geophys. Res . 95 , 16,851 – 16,864  

  17. FAO/UNESCO . 1974. Soil Map of the World, vol . I-X. Paris .  

  18. Friedlingstein , P. , Fung, I., Holland, E., John, J., Brass-eur, G., Erickson, D. and Schimel, D. 1995. On the contribution of CO2 fertilization to the missing biosph-eric sink. Glob. Biogeochem. Cycles 9 , 541 – 556  

  19. Gao , W . 1994 . Atmosphere-biosphere exchange flux of carbon dioxide in a tallgrass prairie modeled with satellite spectral data . J. Geophys. Res . 99 , 1317 – 1327 .  

  20. Gates , D. M . 1985 . Global biospheric response to increasing atmospheric carbon dioxide concentrations. In: Direct effects of increasing atmospheric carbon diox-ide on vegetation . Rep. DOE/ER-0238 (eds. Strain, B. R. and Cure, J. D ). US Department of Energy, Washington, DC, 171 – 184 .  

  21. Goulden , M. L. , Munger , J. W. , Fan , S.-M. , Daube , B. C. and Wofsy , S. C . 1996 . Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of accuracy . Glob. Change Biol . 2 , 169 – 182 .  

  22. Goulden , M. L. , Wofsy , S. C. , Harden , J. W. , Trumbore , S. E. , Crill , P. M. , Gower , S. T. , Fries , T. , Daube , B. C. , Fan , S.-M. and Sutton , D. J . 1998 . Sensitivity of boreal forest carbon balance to soil thaw . Science 279 , 214 – 217 .  

  23. Grace , J. , Lloyd , J. , McIntyre , J. , Miranda , A. C. , Meir , P. , Miranda , H. S. , Nobre , C. , Moncrieff , J. , Massheder , J. , Malhi , Y. , Wright , I. and Gash , J . 1995 . Carbon dioxide uptake by an undisturbed tropical rain forest in south-west Amazonia, 1992 to 1993 . Science 270 , 778 – 780 .  

  24. Grace , J. , Malhi , Y. , Lloyd , J. , McIntyre , J. , Miranda , A. C. , Meir , P. and Miranda , H. S . 1996 . The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forests . Glob. Change Biol . 2 , 209 – 217 .  

  25. Greco , S. and Baldocchi , D. D . 1996 . Seasonal variations of CO2 and water vapour exchange rates over a tem-perate deciduous forest . Glob. Change Biol . 2 , 183 – 197 .  

  26. Hall , C. A. S. and Uhlig , J . 1991 . Refining estimates of carbon released from tropical land-use change . Can. J. For. Res . 21 , 118 – 131 .  

  27. Harmon , M. E. , Ferrel , W. K. and Franklin , J. F . 1990 . Effects on carbon storage of the conversion of old-growth forests to young forests . Science 247 , 699 – 702 .  

  28. Heimann , M. , Esser , G. , Haxeltine , A. , Kaduk , J. , Kick-lighter , D. W. , Knorr , W. , Kohlmaier , G. H. , McGuire , A.D. ., Melillo, J., Moore, B., Otto, R. D., Prentice ,  

  29. I. C. , Sauf, W. , Schloss, A. , Sitch, S. , Wittenberg, U. and Wirth, G. 1998 . Evaluation of terrestrial carbon cycle models through simulations of the seasonal cycle of atmospheric CO2: first results of a model inter-comparison study . Glob. Biogeochem. Cycles 12 , 1 – 24 .  

  30. Holland , E. A. , Braswell , B. H. , Lamarque , J.-F. , Townsend , A. , Sulzman , J. , Muller , J.-F. , Dentener , F. , Brasseur , G. , Levy II , H , Penner , J. E., and Roelofs, G.-J. 1997. Variations in the predicted spatial distribu-tion of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J. Geophys. Res . 102 , 15,849 – 15,866  

  31. Houghton , R. A. , Hobbie , J. E. , Melillo , J. M. , Moore , B. , Peterson , B. J. , Shaver , G. R. and Woodwell , G. M . 1983 . Changes in the content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere . Ecol. Monogr . 53 , 235 – 262 .  

  32. Houghton , R. A. , Boone , R. D. , Fruci , J. R. , Hobbie , J. E. , Melillo , J. M. , Palm , C. A. , Peterson , B. J. , Shaver , G. R. , Woodwell , G. M. , Moore , B. , Skole , D. L. and Myers , N . 1987 . The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of the global flux . Tellus 39B , 122 – 139 .  

  33. Houghton , R. A . 1991 . Tropical deforestation and atmo-spheric carbon dioxide . Clim. Change 19 , 99 – 118 .  

  34. Houghton , R. A . 1995 . Effects of land-use change, surface temperature, and CO2 concentration on terrestrial stores of carbon. In: Biotic feedbacks in the global climatic system (eds. Woodwell, G. M. and Mackenzie, F. T. ). Oxford University Press, New York, 333 – 366 .  

  35. Hudson , R. J. M. , Gherini , S. A. and Goldstein , R. A . 1994 . Modeling the global carbon cycle: Nitrogen fert-ilization of the terrestrial biosphere and the “missing” CO2 sink . Glob. Biogeochem. Cycles 8 , 307 – 333 .  

  36. Hungate , B. A ., Chapin III, F. S., Zhong, H., Holland, E. A. and Field, C. B. 1997a. Stimulation of grassland nitrogen cycling under carbon dioxide enrichment. Oecol . 109 , 149 – 153  

  37. Hungate , B. A. , Holland , E. A. , Jackson , R. B ., Chapin III, F. S., Mooney, H. A. and Field, C. B. 1997b. The fate of carbon in grasslands under carbon dioxide enrichment. Nature 388 , 576 – 579  

  38. Idso , K. E. and Idso , S. B . 1994 . Plant responses to atmospheric CO2 enrichment in the face of environ-mental constraints: a review of the last 10 years' research . Agric. For. Meteorol . 69 , 153 – 203 .  

  39. IPCC . 1995 . Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Intergovernmental Panel on Cli-mate Change . Cambridge University Press . New York .  

  40. Joos, F. , Bruno, M. , Fink, R. , Stocker, T. F. , Siegen-thaler, U. , Le Quéré, C. and Sarmiento, J. L. 1996 . An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake . Tellus 48B , 397 – 417 .  

  41. Kaiser , J . 1998 . New network aims to take the world's CO2 pulse . Science 281 , 506 – 507 .  

  42. Keeling , C. D. , Whorf , T. P. , Wahlen , M. and van der Plicht , J . 1995 . Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980 . Nature 375 , 666 – 670 .  

  43. Keeling , R. F. , Piper , S. C. and Heimann , M . 1996 . Global and hemispheric CO2 sinks deduced from changes in atmospheric 02 concentration . Nature 381 , 218 – 221 .  

  44. Kicklighter , D. W. , Bondeau , A. , Schloss , A. L. , Kaduk , J. , McGuire , A. D. and the participants of “Potsdam '95”. Comparing global models of terrestrial net primary productivity (NPP): global pattern and differentiation by major biomes. Glob. Change Biol ., in press .  

  45. Kimball , B. A . 1975 . Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observa-tions . Agron. J . 75 , 779 – 788 .  

  46. Kindermann , J. , Lfideke , M. K. B. , Badeck , F.-W. , Otto , R.D. ., Klaudius, A., Hager, Ch., Wirth, G., Lang, T., Dönges, S., Habermehl, S. and Kohlmaier, G. H. 1993. Structure of a global carbon exchange model for the terrestrial biosphere: the Frankfurt Biosphere Model (FBM). Water Air Soil Pollut . 70 , 675 – 684  

  47. King , A. W. , Emanuel , W. R. , Wullschleger , S. D. and Post , W. M . 1995 . In search of the missing carbon sink: a model of terrestrial biospheric response to land-use change and atmospheric CO2 . Tellus 47B , 501 – 519 .  

  48. Kirschbaum , M. U. F. and Farquhar , G. D . 1987 . Investi-gation of the CO2 dependence of quantum yield and respiration in Eucalyptus pauciflora . Plant Physiol . 83 , 1032 – 1036 .  

  49. Kirschbaum , M. U. F . 1993 . A modelling study of the effects of changes in atmospheric CO2 concentration, temperature and atmospheric nitrogen input on soil organic carbon storage . Tellus 45B , 321 – 334 .  

  50. Kohlmaier , G. H. , Badeck , F.-W. , Otto , R.D. ., Hager, C., Dönges, S., Kindermann, J., Wfirth, G., Lang, T., Mel, U., Nadler, A., Klaudius, A., Ramge, P., Haber-mehl, S. and Lfideke, M. K. B. 1997. The Frankfurt Biosphere Model: a global process-oriented model of seasonal and long-term CO2 exchange between terrest-rial ecosystems and the atmosphere. II. Global results for potential vegetation in an assumed equilibrium state, Clim. Res . 8 , 61 – 87 .  

  51. Korner , C. and Arnone III, J. A. 1992. Responses to elevated carbon dioxide in artificial tropical eco-systems . Science 257 , 1672– 1675 .  

  52. Kurz , W. A. , Apps , M. J. , Beukema , S. J. and Lek-strum , T . 1995a . 20th century carbon budget of Canad-ian forests . Tellus 47B , 170 – 177 .  

  53. Kurz , W. A. , Apps , M. J. , Stocks , B. J. and Volney , W. J. A . 1995b . Global climate change: disturbance regions and tropospheric feedbacks of temperate and boreal forests. In: Biotic feedbacks in the global climatic system ( eds. Woodwell, G. M. and Mackenzie, F. T. ). Oxford University Press , New York .  

  54. Leemans , R. and Cramer , W. P . 1991 . The IIASA climate database for land areas on a grid with 0.5° resolution. Research Report RR-91-18. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Aus-tria, 60 pp.  

  55. Lfideke , M. K. B. , Badeck , F.-W. , Otto , R.D. ., Hager, C., Donges, S., Kindermann, J., Wfirth, G., Lang, T., Jakel, U., Klaudius, A., Ramge, P., Habermehl, S. and Kohlmaier, G. H. 1994. The Frankfurt Biosphere Model: a global process oriented model for the sea-sonal and longterm CO2 exchange between terrestrial ecosystems and the atmosphere. Part 1: model descrip-tion and illustrating results for the vegetation types cold deciduous and boreal forests. Clim. Res . 4 , 143 – 166 .  

  56. Matthews , E . 1983 . Global vegetation and land use: new high resolution data bases for climate studies . J. Clim. Appl. Meteorol . 22 , 474 – 487 .  

  57. McGuire , A.D. ., Joyce, L. A., Kicklighter, D. W., Melillo, J. M., Esser, G. and Vorosmarty, C. J. 1993. Productiv-ity response of climax temperate forests to elevated temperature and carbon dioxide: a North America comparison between two models. Clim. Change 24 , 287 – 310  

  58. McGuire , A.D. ., Melillo, J. M. and Joyce, L. A. 1995. The role of nitrogen in the response of forest net primary production to elevated atmospheric carbon dioxide. Annu. Rev. Ecol. Syst . 26 , 473 – 503  

  59. McGuire , A.D. ., Melillo, J. M., Kicklighter, D. W., Pan, Y., Xiao, X., Helfrich, J., Moore III, B., Vorosmarty, C. J. and Schloss, A. L. 1997. Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon diox-ide: sensitivity to changes in vegetation nitrogen con-centration. Glob. Biogeochem. Cycles 11 , 173 – 189  

  60. McMurtrie , R. E . 1993 . Modelling of canopy carbon and water balance. In: Photosynthesis and production in a changing environment: a field and laboratory manual (eds. Hall, D. O. , Scurlock, J. M. O. , Bolhar-Nordenk-ampf, H. R. , Leegood, R. C. and Long, S. P. ). Chapman and Hall, London.  

  61. Melillo , J. M. and Gosz , J . 1983 . Interactions of biogeo-chemical cycles in forest ecosystems. In: The major biogeochemical cycles and their interactions (eds. Bolin, B. and Cook, R. B. ). John Wiley and Sons, New York, 177 – 222 .  

  62. Melillo , J. M. , Fruci , J. , Houghton , R ., Moore III, B. and Skole, D. 1988. Land-use change in the Soviet Union between 1850 and 1980: causes of a net release of CO2 to the atmosphere . Tellus 40B , 116 – 128 .  

  63. Melillo , J. M. , McGuire , A. D. , Kicklighter , D. W. , Moore , B. , Vörösmarty , C. J. and Schloss , A. L . 1993 . Global climate change and terrestrial net primary pro-duction . Nature 363 , 234 – 240 .  

  64. Melillo , J. M . 1995 . Human influences on the global nitrogen budget and their implications for the global carbon budget. In: Toward global planning of sustain-able use of the earth: development of global eco-engin-eering (eds. Murai, S. and Kimura, M. ). Elsevier, Amsterdam, The Netherlands, 117 – 133 .  

  65. Melillo , J. M. , Kicklighter , D. W. , McGuire , A. D. , Peterjohn , W. T. and Newkirk , K. M . 1995 . Global change and its effects on soil organic carbon stocks. In: Role of non-living organic matter in the earth's carbon cycle (eds. Zepp, R. G. and Sonntag, Ch. ). John Wiley and Sons, Ltd., Chichester, UK, 175 – 189 .  

  66. Melillo , J. M. , Houghton , R. A. , Kicklighter , D. W. and McGuire , A. D . 1996a . Tropical deforestation and the global carbon budget . Annu. Rev. Energy Environ . 21 , 293 – 310 .  

  67. Melillo , J. M. , Prentice , I. C. , Farquhar , G.D. ., Schulze, E. D. and Sala, O. E. 1996b. Terrestrial biotic responses to environmental change and feedbacks to climate. In: Climate change 1995 - the science of climate change : contribution of Working Group I to the 2nd assessment report of the Intergovernmental Panel on Climate Change (eds. Houghton, J. T. , Meiro Filho, L. G. , Callander, B. A. , Harris, N. , Katten-berg, A. and Maskell, K. ). Cambridge University Press, New York, 445 – 481 .  

  68. Miranda , A. C. , Miranda , H. S. , Lloyd , J. , Grace , J. , Francey , R. J. , McIntyre , J. A. , Meir , P. , Riggan , P. , Lockwood , R. and Brass , J . 1997 . Fluxes of carbon, water and energy over Brazilian cerrado: an analysis using eddy covariance and stable isotopes . Plant, Cell Environ . 20 , 315 – 328 .  

  69. Oechel , W. C. , Hastings , S. J. , Vourlitis , G. , Jenkins , M. , Riechers , G. and Grulke , N . 1993 . Recent change of arctic tundra ecosystems from a net carbon dioxide sink to a source . Nature 361 , 520 – 523 .  

  70. Olson , J. S . 1992 . World ecosystems (WE1.4), digital raster data on a 10-minute geographic 1080 x 2160 grid. In: Global ecosystems database, version 10: Disc A . National Geophysical Data Center, Boulder, CO, CD_ROM , 5 MB .  

  71. Owensby , C. E. , Coyne , P.I. ., Ham, J. M., Auen, L. M. and Knapp, A. K. 1993. Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated levels of CO2. Ecol. Appl . 3 , 644 – 653  

  72. Owensby , C. E. , Ham , J. M. , Knapp , A. , Rice , C. W. , Coyne , P. I. and Auen , L. M . 1996 . Ecosystem-level responses of tallgrass prairie to elevated CO2. In: Carbon dioxide and terrestrial ecosystems (eds. Koch, G. W. , and Mooney, H. A. ). Academic Press, San Diego, CA, 147 – 162 .  

  73. Pan , Y. , Melillo , J. M. , McGuire , A.D. ., Kicklighter, D. W., Pitelka, L. F., Hibbard, K., Pierce, L. L., Running, S. W., Ojima, D. S., Parton, W. J., Schimel, D. S. and other VEMAP Members. 1998. Modeled responses of terrestrial ecosystems to elevated atmo-spheric CO2: a comparison of simulations by the bio-geochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP). Oecol . 114 , 389 – 404  

  74. Peterson , B. J. and Melillo , J. M . 1985 . The potential storage of carbon caused by eutrophication of the biosphere . Tellus 37B , 117 – 127 .  

  75. Post , W. M. , King , A. W. and Wullschleger , S. D . 1997 . Historical variations in terrestrial biospheric carbon storage . Glob. Biogeochem. Cycles 11 , 99 – 109 .  

  76. Prentice , C. , Cramer , W. , Harrison , S. P. , Leemans , R. and Monserud , R. A . 1992 . A global biome model based on plant physiology and dominance, soil proper-ties and climate . J. Biogeogr . 19 , 117 – 134 .  

  77. Schimel , D. S . 1995 . Terrestrial ecosystems and the carbon cycle . Glob. Change Biol . 1 , 77 – 91 .  

  78. Schimel , D. , Alves , D. , Enting, I., Heimann, M., Joos, F., Raynaud, D. and Wigley, T. 1996. Radiative forcing of climate change. In: Climate change 1995 - the science of climate change : contribution of Working Group I to the 2nd assessment report of the Intergov-ernmental Panel on Climate Change (eds. Houghton, J. T. , Meiro Filho, L. G. , Callander, B. A. , Harris, N. , Kattenberg, A. and Maskell, K. ). Cambridge Univer-sity Press, New York, 75 – 86 .  

  79. Schindler , D. W. and Bayley , S. E . 1993 . The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition . Glob. Biogeochem. Cycles 7 , 717 – 733 .  

  80. Siegenthaler , U. and Oeschger , H . 1987 . Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data . Tellus 39B , 140 – 154 .  

  81. Thompson , M. V. , Randerson , J. T. , Malmström , C. M. and Field , C. B. 1996. Change in net primary produc-tion and heterotrophic respiration: how much is neces-sary to sustain the terrestrial carbon sink? Glob . Biogeochem. Cycles 10 , 711 – 726 .  

  82. Tian , H. , Melillo , J. M. , Kicklighter , D. W. , McGuire , A. D. and Helfrich , J . The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus 51B , 414 – 452  

  83. Tian , H. , Melillo , J. M. , Kicklighter , D. W. , McGuire , A. D ., Helfrich III, J. V. K., Moore III, B. and Vörös-marty, C. J. 1998. Effect of interannual climate varia-bility on carbon storage in Amazonian ecosystems. Nature 396 , 664 – 667  

  84. Townsend , A. R. , Braswell , B. H. , Holland , E. A. and Penner , J. E . 1996 . Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen . Ecol. Appl . 6 , 806 – 814 .  

  85. Valentini , R. , De Angelis , P. , Matteucci , G. , Monaco , R. , Dore , S. and Scarascia Mugnozza , G. E . 1996 . Sea-sonal net carbon exchange of a beech forest with the atmosphere . Glob. Change Biol . 2 , 199 – 207 .  

  86. VEMAP Members . 1995 . Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): comparing biogeography and biogeochemistry models in a con-tinental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling . Glob. Biogeo-chem. Cycles 9 , 407 – 437 .  

  87. Vitousek , P. M. and Howarth , R. W . 1991 . Nitrogen limitation on land and sea: How can it occur? Biogeo-chem . 13 , 87 – 115 .  

  88. Wofsy , S. C. , Harriss , R. C. and Kaplan , W. A . 1988 . Carbon dioxide in the atmosphere over the Amazon Basin . J. Geophys. Res . 93 , 1377 – 1387 .  

  89. Wofsy , S. C. , Goulden , M. L. , Munger , J. W. , Fan , S.-M. , Bakwin , P. S. , Daube , B. C. , Bassow , S. L. and Bazzaz , F. A . 1993 . Net exchange of CO, in a mid-latitude forest . Science 260 , 1314 – 1317 .  

  90. Wong , S. C. , Cowan , I. R. and Farquhar , G. D . 1979 . Stomatal conductance correlates with photosynthetic capacity . Nature 282 , 424 – 426 .  

  91. Xiao , X , Kicklighter , D. W. , Melillo , J. M. , McGuire , A. D. , Stone , P. H. and Sokolov , A. P . 1997 . Linking a global terrestrial biogeochemical model and a 2-dimensional climate model: implications for the global carbon budget . Tellus 49B , 18 – 37 .  

  92. Xiao , X. , Melillo , J. M. , Kicklighter , D. W. , McGuire , A. D. , Prinn , R. G. , Wang , C. , Stone , P. H. and Soko-lov , A . 1998 . Transient climate change and net eco-system production of the terrestrial biosphere . Glob. Biogeochem. Cycles 12 , 345 – 360 .  

comments powered by Disqus