Start Submission Become a Reviewer

Reading: Three-dimensional transport and concentration of SF6 A model intercomparison study (TransCom 2)

Download

A- A+
Alt. Display

Original Research Papers

Three-dimensional transport and concentration of SF6 A model intercomparison study (TransCom 2)

Authors:

A. Scott Denning ,

Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523–1371, US
X close

Mark Holzer,

Canadian Center for Climate Modeling and Analysis, Atmospheric Environment Service, University of Victoria, Victoria, B.C., V8W 2Y2, CA
X close

Kevin R. Gurney,

Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523–1371, US
X close

Martin Heimann,

Max-Planck-Institut für Meteorologie, Bundesstrasse 55, D-2000 Hamburg 13, DE
X close

Rachel M. Law,

CRC for Southern Hemisphere Meteorology, Monash University, Clayton, Victoria 3168, AU
X close

Peter J. Rayner,

CRC for Southern Hemisphere Meteorology, Monash University, Clayton, Victoria 3168, AU
X close

Inez Y. Fung,

NASA Goddard Institute for Space Studies, New York, NY; Center for Atmospheric Sciences, McCone Hall, University of California, Berkeley, CA, US
X close

Song-Miao Fan,

Atmospheric and Oceanic Sciences, Sayre Hall, Princeton University, Princeton, NJ, US
X close

Shoichi Taguchi,

National Institute for Resources and Environment, 16-3, Onagawa Tsukuba, Ibaraki, JP
X close

Pierre Friedlingstein,

NASA Goddard Institute for Space Studies, New York, NY, US
X close

Yves Balkanski,

Centre des Faibles Radioactivites, LMCE, Gif-sur-Yvette, Saclay, FR
X close

John Taylor,

Centre for Resource and Environmental Studies, Australia National University, Canberra, ACT 0200, AU
X close

Manfred Maiss,

Max-Planck-Institute for Chemistry, Air Chemistry Division, Mainz, DE
X close

Ingeborg Levin

Institut für Umweltphysik, University of Heidelberg, Heidelberg, DE
X close

Abstract

Sulfur hexafluoride (SF6) is an excellent tracer of large-scale atmospheric transport, because it has slowly increasing sources mostly confined to northern midlatitudes, and has a lifetime of thousands of years. We have simulated the emissions, transport, and concentration of SF6 for a 5-year period, and compared the results with atmospheric observations. In addition, we have performed an intercomparison of interhemispheric transport among 11 models to investigate the reasons for the differences among the simulations. Most of the models are reasonably successful at simulating the observed meridional gradient of SF6 in the remote marine boundary layer, though there is less agreement at continental sites. Models that compare well to observations in the remote marine boundary layer tend to systematically overestimate SF6 at continental locations in source regions, suggesting that vertical trapping rather than meridional transport may be a dominant control on the simulated meridional gradient. The vertical structure of simulated SF6 in the models supports this interpretation. Some of the models perform quite well in terms of the simulated seasonal cycle at remote locations, while others do not. Interhemispheric exchange time varies by a factor of 2 when estimated from 1-dimensional meridional profiles at the surface, as has been done for observations. The agreement among models is better when the global surface mean mole fraction is used, and better still when the full 3-dimensional mean mixing ratio is used. The ranking of the interhemispheric exchange time among the models is not sensitive to the change from station values to surface means, but is very sensitive to the change from surface means to the full 3-dimensional tracer fields. This strengthens the argument that vertical redistribution dominates over interhemispheric transport in determining the meridional gradient at the surface. Vertically integrated meridional transport in the models is divided roughly equally into transport by the mean motion, the standing eddies, and the transient eddies. The vertically integrated mass flux is a good index of the degree to which resolved advection vs. parameterized diffusion accomplishes the meridional transport of SF6. Observational programs could provide a much better constraint on simulated chemical tracer transport if they included regular sampling of vertical profiles of nonreactive trace gases over source regions and meridional profiles in the middle to upper troposphere. Further analysis of the SF6 simulations will focus on the subgrid-scale parameterized transports.

How to Cite: Denning, A.S., Holzer, M., Gurney, K.R., Heimann, M., Law, R.M., Rayner, P.J., Fung, I.Y., Fan, S.-M., Taguchi, S., Friedlingstein, P., Balkanski, Y., Taylor, J., Maiss, M. and Levin, I., 1999. Three-dimensional transport and concentration of SF6 A model intercomparison study (TransCom 2). Tellus B: Chemical and Physical Meteorology, 51(2), pp.266–297. DOI: http://doi.org/10.3402/tellusb.v51i2.16286
2
Views
  Published on 01 Jan 1999
 Accepted on 22 Oct 1998            Submitted on 5 Dec 1997

References

  1. Boer , G. J ., 1982 . Diagnostic equations in isobaric coord-inates . Mon. Weather Rev . 110 , 1801 – 1820 .  

  2. Bousquet , P. , Ciais , P. , Monfray , P. , Balkanski , Y. , Ramonet , M. and Tans , P . 1996 . Influence of two atmospheric transport models on inferring sources and sinks of atmospheric CO2 . Tellus 48B , 568 – 582 .  

  3. Ciais , P. , Tans , P. P. , Trolier , M. , White , J. W. C. and Francey , R. J . 1995 . A large northern hemisphere ter-restrial CO2 sink indicated by the 13C/12C ratio of atmospheric CO2 . Science 269 , 1098 – 1102 .  

  4. Crutzen , P. J. , Elansky , N. F. , Hahn , M. , Golitsyn , G. S. , Brenninkmeijer , C. A. M. , Scharffe , D. H. , Berlikov , I. B. , Maiss , M. , Bergamaschi , P. , Roeckmann , T. , Grisenko , A. M. and Sevostyanov , V. M . 1998 . Trace gas measurements between Moscow and Vladivostok using the Trans-Siberian Railroad , J. Atmos. Chem . 29 , 179 – 194 .  

  5. Czeplak , G. and C. Junge , 1974 : Studies of interhemi-spheric exchange in the troposphere by a diffusion model . Adv. Geophys . 18B , 57 – 72 .  

  6. DelGenio , A. D. and M.-S. Yao ( 1993 ): Efficient cumulus parameterization for long-term climate studies: The GISS scheme. In Representation of cumulus convec-tion in numerical models ( K. A. Emanuel and D. A. Raumopnd, eds.). AMS Meteor, Monograph 24, no. 46, pp. 181 – 184 . American Meteorological Society .  

  7. DelGenio , A. D. , M.-S. Yao , W. Kovari and K. K.-W. Lo ( 1996 ): A prognostic cloud water parameterization for global climate models . J. Clim . 9 , 270 – 304 .  

  8. Denning , A. S. , Fung , I. Y. , and Randall , D. A . 1995 . Latitudinal gradient of atmospheric CO2 due to sea-sonal exchange with land biota . Nature 376 , 240 – 243 .  

  9. Denning , A. S. , J. G. Collatz , C. Zhang , D. A. Randall , J. A. Berry , P. J. Sellers , G. D. Colello and D. A. Dazlich , 1996a . Simulations of terrestrial carbon meta-bolism and atmospheric CO2 in a general circulation model. Part 1: Surface carbon fluxes . Tellus 48B , 521 – 542 .  

  10. Denning , A. S. , Randall , D. A. , Collatz , G. J. , and Sellers , P. J . 1996b . Simulations of terrestrial carbon metabol-ism and atmospheric CO2 in a general circulation model. Part 2: Spatial and temporal variations of atmospheric CO2 . Tellus 48B , 543 – 567 .  

  11. Enting , I. G. , Trudinger , C. M. , and Francey , R. J . 1995 . A synthesis inversion of the concentration and 03C of atmospheric CO2 . Tellus 47B , 35 – 52 .  

  12. Feichter , J. and Crutzen , P. J . 1990 . Parameterization of vertical tracer transport due to deep convection and its evaluation with 222Radon measurements . Tellus 42B , 100 – 117 .  

  13. Fowler , L. A. , Randall , D. A. and Rutledge , S. A ., 1996 . Liquid and ice cloud microphysics in the CSU General Circulation Model. Part I: Model description and simulated microphysical processes . J. Clim 9 , 489 – 529 .  

  14. Fung, I. , Prentice, K. , Matthews, E. , Lerner, J. and Rus-sell, G. 1983. Three-dimensional tracer model study of atmospheric CO2: Response to seasonal exchanges with the terrestrial biosphere. J. Geophys. Res . 88 , 1281 – 1294  

  15. Geller , L. S. , Elkins , J. W. , Lobert , J. M. , Clarke , A. D. , Hurst , D. F. , Butler , J. H. and Myers , R. C . 1997 . Tropospheric SF,: Observed latitudinal distribution and trends, derived emissions and interhemispheric exchange time . Geophys. Res. Lett . 24 , 675 – 678 .  

  16. Hamilton , K. , Wilson , R. J. , Mahlman , J. D. , and Umscheid , L. J . 1995 . Climatology of the SKYHI tro-posphere-stratosphere-mesosphere general circulation model . J. Atmos. Sci . 52 , 5 – 43 ,  

  17. Hansen , J. , Russell , G. , Rind , D. , Stone , P. , Lacis , A. , Lebedeff , S. , Ruedy , R. and Travis , L . ( 1983 ). Efficient three-dimensional global models for climate studies: Models I and II . Mon. Wea. Rev . 111 , 609 – 662 .  

  18. Hansen , J. , Sato , M. , Ruedy , R. , Lacis , A. , Asamoth , K. , Borenstein , S. , Brown , E. , Cairns , B. , Caliri , G. , Campbell , M. , Curran , B. , de Castro , S. , Druyan , L. , Fox , M. , Johnson , C. , Lerner , J. , McCormick , M. P. , Miller , R. , Minnis , P. , Morrison A. , Pandolfo , L ., Ram-berran, I. , Zaucker, F. , Robinson, M. , Ruseell, P. , Shah, K. , Stone, P. , Tegen, I. , Thomason, L. , Wilder, J. and Wilson, H. (1996). A Pinatubo climate modeling investigation. In The Mount Pinatubo eruption effects on the atmosphere and climate ( G. Fiocco, D. Fua and G. Visconti. eds.) NASO ASI Series , vol. I , 42,pp. 233 - 272 . Springer-Verlag , Heidelberg, Germany .  

  19. Harnisch , J. , Borchers , R. , Fabian , P. and Maiss , M . 1996 . Tropospheric trends of CF4 and C2F6 since 1982 derived from SF, dated stratospheric air . Geophys. Res. Lett . 23 , 1099 .  

  20. Hartke , G. J. and D. Rind ( 1997 ). Improved surface and boundary layer models for the Goddard Institute for Space Studies general circulation model . J. Geophys. Res . 102 , 16407 – 16442 .  

  21. Hartley , D. , Williamson , D. L. , Rasch , P. J. and Prinn , R ., 1994 . Examination of tracer transport in the NCAR CCM2 by comparison of CFC13 simulations with ALE/GAGE observations . J. Geophys. Res . 99 , 12885 – 12896 .  

  22. Heimann , M. , Keeling , C. D. and Fung , I. Y . 1986 . Simulating the atmospheric carbon dioxide distribu-tion with a three-dimensional tracer model. In: The changing carbon cycle: a global analysis , (eds Trabalka, J. R. and Reichle, D. E. ). Springer-Verlag, New York, 16 – 49 .  

  23. Heimann , M. and Keeling , C. D . 1989 . A three-dimensional model of atmospheric CO2 transport based on observed winds: 2. Model description and simulated tracer experiments. In: Aspects of climate variability in the Pacific and Western Americas (ed. Peterson D. H. ). Geophysical Monograph 55, American Geophysical Union, Washington, DC, 237 – 275 .  

  24. Heimann , M . 1995 . The TM2 Tracer Model, Model Description and User Manual . Technical Report, No. 10, ISSN 0940-9327, Deutsches Klimarechenzen-trum, Hamburg, 47 pp.  

  25. Holzer , M ., 1999 . Analysis of passive tracer transport as modelled by an atmospheric general circulation model . Jour. Clim ., in press .  

  26. Hurst , D. F. , Bakwin , P. S. , Myers , R. C. and Elkins , J. W . 1997 . Behavior of trace gas mixing ratios on a very tall tower in North Carolina . J. Geophys. Res . 102 , 8825 – 8835 .  

  27. Jacob , D. J. , Prather , M. J. , Wofsy , S. C. and McElroy , M. B . 1987 : Atmospheric distribution of “Kr simu-lated with a general circulation model . J. Geophys. Res . 92 , 6614 – 6626 .  

  28. Jacob , D. J. and Prather , M. J ., 1990 . Radon-222 as a test of boundary-layer convection in a general circula-tion model . Tellus 42B , 118 – 134 .  

  29. Jacob , D. J. , Prather , M. J. , Rasch , P. J. , Shia , R.-L. , Balkanski , Y. J. , Beagley , S.R. ., Bergmann, D. J., Black-shear, M. B., Chiba, M., Chipperfield, J. d G., Dignon, J. E., Feichter, J., Genthon, C., Grose, W. L., Khasib-atla, P. S., Kohler, I., Kritz, M., Law, K., Penner, J. E., Ramonet, M., Reeves, C. E., Rotman, D. A., Stockwell, D. Z., van Velthoven, P. F. J., Verver, G., Wild, O., Yang, H. and Zimmerman, P. 1997. Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers. J. Geophys. Res . 102 , 5953 – 5970  

  30. Kasibhatla , P. S. , Levy II , H., and Moxim, W. J., 1993. Global NO„ HNO3, PAN and NO distributions from fossil-fuel combustion emissions: A model study, J. Geophys. Res . 98 , 7165 – 7180  

  31. Law , R. M. , Simmonds , L. and Budd , A . 1992 . Applica-tion of an atmospheric tracer model to the high south-ern latitudes . Tellus 44B , 358 – 370 ,  

  32. Law , R. M. , Rayner , P. J. , Denning , A. S. , Erickson , D. , Heimann , M. , Piper , S. C. , Ramonet , M. , Taguchi , S. , Taylor , J. A. , Trudinger , C. M. and Watterson , I. G . 1996 . Variations in modelled atmospheric transport of carbon dioxide and the consequences for CO2 inver-sions Global Biogeochem . Cycles 10 , 783 – 796 .  

  33. Levin , I. and Hesshaimer , V . 1996 . Refining of atmo-spheric transport model entries by the globally observed passive tracer distributions of “Kr and sulfur hexafluoride (SF6) . J. Geophys. Res . 101 , 16745 – 16755 .  

  34. Levy II , H , Mahlman , J. D., and Moxim, W. J. 1982. Tropospheric N20 variability. J. Geophys. Res . 87 , 3061 – 3080  

  35. Levy II , H. and W.J. Moxim, Fate of US and Canadian combustion nitrogen emissions . Nature 328 , 414 – 416 , 1987 .  

  36. Louis , J. F ., 1979 . A parametric model of vertical eddy fluxes in the atmosphere . Boundary Layer Meteorol . 17 , 187 – 202 .  

  37. Mahlman , J. D. , and Moxim , W. J . 1978 . Tracer simula-tion using a global general circulation model: results from a midlatitude instantaneous source experiment , J. of the Atmos. Sci . 35 , 1340 – 1374 ,  

  38. Mahlman , J. D. and L. J. Umscheid , 1984 . Dynamics of the middle atmosphere: Successes and problems of the GFDL “SKYHI” general circulation models. In: Dynamics of the Middle Atmosphere (eds Holton, J. R. and Matsuno, T. ). Terra Scientific, pp. 501-525  

  39. Mahlman , J. D. , Pinto , J. P. and Umscheid , L. J . 1994 . Transport, radiative, and dynamical effects of the Antarctic ozone hole: A GFDL “SKYHI” model experiment . J. Atmos. Sci . 51 , 489 – 508  

  40. Mahowald , N. M. , Rasch , P. J. and Prinn , R. G . 1995 . Cumulus parameterizations in chemical transport models . J. Geophys. Res . 100 , 26173 – 16190 .  

  41. Maiss , M. and Levin , I . 1994 . Global increase of SF6 observed in the atmosphere . Geophys. Res. Lett . 21 , 569 – 572 .  

  42. Maiss , M. , Steele , L. P. , Francey , R. J. , Fraser , P. J. , Langenfelds , R. L. , Trivett , N. B. A. and Levin , I . 1996 . Sulfur hexafluoride — a powerful new atmospheric tracer . Atmos. Environ . 30 , 1621 – 1629 .  

  43. McFarlane , N. A. , Boer , G. J. , Blanchet , J. P. and Lazare , M . 1992 . The Canadian Climate Centre second genera-tion general circulation model and its equilibrium cli-mate . J. Clim . 5 , 1013 – 1044 .  

  44. Patra , P. K. , Lal , S. , Subbaraya , B. H. , Jackman , C. H. and Rajaratnam , P . 1997 . Observed vertical profile of sulfur hexafluoride (SF6) and its atmospheric applica-tions . J. Geophys. Res . 102 , 8855 – 8859 .  

  45. Plumb , R. A. and D. D. McConalogue , 1988 : On the meridional structure of long-lived tropospheric con-stituents . J. Geophys. Res . 93 , 15897 – 15913 .  

  46. Prather , M. , McElroy , M. , Wofsy , S. , Russel , G. and Rind , D . 1987 . Chemistry of the global troposphere: Fluorocarbons as tracers of air motion . J. Geophys. Res . 92 , 6579 – 6613 .  

  47. Pyle , J. and Prather , M. (eds.) 1996 . Global tracer trans-port models. Report of a Scientific Symposium, World Climate Research Programme, Report No. 24.186 pp . Randall, D. A. , Shao, Q. and Moeng, C.-H. 1992. A second-order bulk boundary-layer model . J. Atmos. Sci . 49 , 1903 – 1923 .  

  48. Randall , D. A. and Pan , D.-M ., 1993. Implementation of the Arakawa-Schubert parameterization with a pro-gnostic closure. In: The Representation of Cumulus Convection in Numerical Models ( eds Emanuel, K. and Raymond, D. ). American Meteorological Society, Boston, 137 – 144 .  

  49. Randall , D. R. , Sellers , P. J. , Berry , J. A. , Dazlich , D. A. , Zhang , C. , Collatz , J. A. , Denning , A. S. , Los , S.O. ., Field, C. B., Fung, I., Justice, C. O. and Tucker, C. J. 1996. A revised land-surface parameterization (SiB2) for GCMs. Part 3: The greening of the Color-ado State University General Circulation Model. J. Clim . 9 , 738 – 763  

  50. Ravishankara , A. R. , Solomon , S. , Turnispeed , A. A. and Warren , R. F ., 1993 . Atmospheric lifetimes of long-lived halogenated species . Science 259 , 194 – 199 .  

  51. Rayner , P. J. and Law , R. M . 1995 . A comparison of modelled responses to prescribed CO2 sources . CSIRO Division of Atmospheric Research Technical Paper No . 36 . 84 pp .  

  52. Russell , G. and Lerner , J . ( 1981 ). A new finite difference scheme for tracer transport equation . J. Appl. Meteor . 20 , 1485 – 1498 .  

  53. Sellers , P. J. , Randall , D. A. , Collatz , G. J. , Berry , J. A. , Field , C. B. , Dazlich , D. A. , Zhang , C. , Collelo , G. D. and Bounoua , L . 1996 , A Revised land surface para-meterization (SiB2) for atmospheric GCMs. Part I: Model formulation . J. Clim . 9 , 676 – 705 .  

  54. Suarez , M. J. , Arakawa , A. and Randall , D. A . 1983 . Parameterization of the planetary boundary layer in the UCLA general circulation model: Formulation and results . Mon Wea. Rev 111 , 2224 – 2243 .  

  55. Taguchi , S . 1996 . A three-dimensional model of atmo-spheric CO2 transport based on analyzed winds: model description and simulation results for TRANSCOM . J. Geophys. Res . 101 , 15099 – 15109 .  

  56. Tans , P. P. , Fung , I. Y. and Takahashi , T . 1990 . Observa-tional constraints on the global atmospheric CO2 budget . Science 247 , 1431 – 1438 .  

  57. Taylor , J. A ., 1989 . A stochastic Lagrangian atmospheric transport model to determine global CO2 sources and sinks — a preliminary study. Tellus 41B, 272-285 Tiedke, M., 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models . Mon. Weather. Rev . 117 , 1779 – 1800 .  

  58. Tobler , W . 1995 . Population database of the Consortium for International Earth Science Information Network (CIESIN) and the Environmental Systems Research Institute, Inc. (ESRI), through the National Center for Geographic Information and Analysis, Dept. of Geography, Univ. of California, Santa Barbara, CA. NCGIA Technical Report TR-95- 6  

  59. United Nations , 1994 . 1992 Energy Statistics Yearbook. United Nations Publication Sales No. E/F.94.XVII.9 , Department for Economic and Social Information and Policy Analysis, Statistical Division , New York .  

  60. Weiss, W. , Sittkus, A. , Stockburger, H. and Sartorius, H. 1983 : Large-scale atmospheric mixing derived from meridional profiles of Krypton 85 . J. Geophys. Res . 88 , 8574 – 8578 .  

  61. WMO , 1995 . Scientific assessment of ozone depletion: 1994. Rep. 37 , Global Ozone Res , and Monit. Pro-ject , Geneva .  

comments powered by Disqus