Start Submission Become a Reviewer

Reading: Model simulations of anthropogenic-CO2 transport to an Arctic monitoring station during winter

Download

A- A+
Alt. Display

Original Research Papers

Model simulations of anthropogenic-CO2 transport to an Arctic monitoring station during winter

Authors:

Magnuz Engardt ,

Department of Meteorology, Stockholm University, S-106 91 Stockholm; Swedish Meteorological and Hydrological Institute, S-601 76 Norrköping, SE
X close

Kim Holmén

Department of Meteorology, Stockholm University, S-106 91 Stockholm, SE
X close

Abstract

We describe, and use, a limited area, 3-dimensional transport model. The model domain is located over the Arctic, but includes the majority of the anthropogenic CO2 emissions in western and eastern Europe, which together make up about 1/3 of the global CO2 emissions. The model is run for several winter periods, using anthropogenic CO2 emissions only, and the results are compared with independent CO2 measurements taken at a monitoring station on Spitsbergen in the high Arctic. We show that the initial concentrations and boundary values of the domain are not crucial for the results, and conclude that most of the measured variability above the winter baseline in CO2 at the Arctic monitoring station emanates from recent CO2 sources within the model domain. From the observed small spatial variability in the monthly mean atmospheric CO2 mixing ratio in the north Atlantic region, we assume that there is only little net exchange between the atmosphere and ocean during the studied periods. Based on the co-variation between CO2 and particulate mass, we hypothesise that most of the measured CO2 variability is due to anthropogenic fossil fuel emissions, although we can not rule out a biogenic CO2 component. Using the transport model, we compare different estimates of fossil-fuel consumption in the mid-latitudes. We find that the industrial centres and the surrounding gasfields in the lower-Ob region (60°-72°N, 65°-80°E) occasionally have a much larger impact on the CO2 measurements at Spitsbergen than follows from a recent CO2 emission inventory. This implies that there may be an overlooked CO2 source in this region, possibly flaring of gas.

How to Cite: Engardt, M. and Holmén, K., 1999. Model simulations of anthropogenic-CO2 transport to an Arctic monitoring station during winter. Tellus B: Chemical and Physical Meteorology, 51(2), pp.194–209. DOI: http://doi.org/10.3402/tellusb.v51i2.16270
  Published on 01 Jan 1999
 Accepted on 22 Sep 1998            Submitted on 18 Nov 1997

References

  1. Andres , R. J. , Marland , G. , Fung, I., and Matthews, E. 1996. A 10 x 10 distribution of carbon dioxide emis-sions from fossil fuel consumption and cement manu-facture, 1950-1990. Global Biogeochem. Cycles 10 , 419 – 429  

  2. Barrie , L. A . 1986 . Arctic air pollution: An overview of current knowledge . Atmos. Environ . 20 , 643 – 663 .  

  3. Barrie , L. A. and Hoff , R. M . 1985 . Five years of air chemistry observations in the Canadian Arctic . Atmos. Environ . 19 , 1995 – 2010 .  

  4. Benkovitz , C. M. , Scholtz , M. T. , Pacyna , J. , Tarrason , L. , Dignon , J. , Voldner , E. C. , Spiro , P. A. , Logan , J. A. and Graedel , T. E . 1996 . Global gridded inventor-ies of anthropogenic emissions of sulfur and nitrogen . J. Geophys. Res . 101D , 29239 – 29253 .  

  5. Bolin , B. and Bischof , W . 1970 . Variations of the carbon dioxide content of the atmosphere in the northern hemisphere . Tellus 22 , 431 – 442 .  

  6. Bott , A . 1989a . A positive definite advection scheme obtained by nonlinear renormalization of the advect-ive fluxes . Mon. Wea. Rev . 117 , 1006 – 1015 .  

  7. Bott , A . 1989b . Reply. Mon. Wea. Rev . 117 , 2633 - 2636 .  

  8. Brooks , S. B. , Crawford , T. L. and Oechel , W. C. 1997 . Measurements of carbon dioxide emissions plumes from Prudhoe Bay, Alaska oil fields . J. Atmos. Chem . 27 , 197 – 207 .  

  9. Conway , T. J. and Steele , L. P . 1989 . Carbon dioxide and methane in the Arctic atmosphere . J. Atmos. Chem . 9 , 81 – 99 .  

  10. Conway , T. J. , Steele , L. P. and Novelli , P. C . 1993 . Correlations among atmospheric CO2, CH4 and CO in the Arctic, March 1989 . Atmos. Environ . 27A , 2881 – 2894 .  

  11. Engardt , M. , Holmén , K. and Heintzenberg , J . 1996 . Short-term variations in atmospheric CO2 at Ny-Alesund, Spitsbergen, during spring and summer . Tellus 48B , 33 – 43 .  

  12. Hansen , A. D. A. , Conway , T. J. , Steele , L. P. , Bodhaine , B. A. , Thoning , K. W. , Tans , P. and Novakov , T . 1989 . Correlations among combustion effluent species at Barrow, Alaska: aerosol black carbon, carbon dioxide and methane . J. Atmos. Chem . 9 , 283 – 299 .  

  13. Heimann , M. and Keeling , C. D . 1989 . A 3-dimensional model of atmospheric CO2 transport based on observed winds: 2. Model description and simulated tracer experiments. In: Aspects of climate variability in the Pacific and the western Americas . (ed. D. H. Peterson . American Geophysical Union, Washington, DC, USA, pp. 237 – 275 .  

  14. Holmén , K. , Engardt , M. and Odh , S.-A . 1995 . The carbon dioxide measurement program at the Department of Meteorology at Stockholm University . International Meteorological Institute in Stockholm, Report CM- 84 , 38 pp .  

  15. Holtslag , A. A. M. , de Bruijn , E. I. F. and Pan , H.-L . 1990 . A high resolution air mass transformation model for short-range weather forecasting . Mon. Wea. Rev . 118 , 1561 – 1575 .  

  16. Holtslag , A. A. M. , van Meijgaard , E. and de Rooy , W. C . 1995 . A comparison of boundary layer diffusion schemes in unstable conditions over land . Boundary-Layer Meteor . 76 , 69 – 95 .  

  17. Khalil , M. A. K. and Rasmussen , R. A . 1984 . Statistical analysis of trace gases in Arctic haze . Geophys. Res. Lett . 11 , 437 – 440 .  

  18. Levin , I. , Graul , R. and Trivett , N. B. A . 1995 . Long-term observations of atmospheric CO2 and carbon isotopes at continental sites in Germany . Tellus 47B , 23 – 34 .  

  19. Marland , G. , Andres , R. J. and Boden , T. A . 1994 . Global, regional, and national CO2 emissions. In: Trends '93: a compendium of data on global change . ORNL/ CDIAC-65 (eds. T. A. Boden , D. P. Kaiser , R. J. Sepanski and F. W. Stoss ). Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA, pp. 505 – 584 .  

  20. Marland , G. , Boden , T. , Andres , R. J. and Johnston , C . 1998 . Estimates of global, regional, and national annual CO2-emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1751-1995 . Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tenn., USA, NDP-030/R8 .  

  21. McGrath , R . 1989 . Trajectory models and their use in the Irish Meteorological Service . Irish Meteorological Service, Glasnevin Hill, Dublin, Internal Memorandum No . 112/89 , 12 pp .  

  22. Muller , J.-F . 1992 . Geographical distribution and sea-sonal variation of surface emissions and deposition velocities of atmospheric trace gases . J. Geophys. Res . 97D , 3787 – 3804 .  

  23. NOAA/CMDL . 1995 . Atmospheric CO2 monthly mean concentration: fixed NOAA flask network station . In: WMO WDCGG DATA REPORT. WDCGG No. 7. Japan Meteorological Agency , Tokyo , pp. 57 – 100 .  

  24. NOAA/CMDL . 1996 . Atmospheric CO2 monthly mean concentration: fixed station NOAA flask sampling net-work . In: WMO WDCGG DATA REPORT. WDCGG No. 11. Japan Meteorological Agency , Tokyo , pp. 67 – 114 .  

  25. Pacyna , J. M. , Ottar , B. , Tomza , U. and Maenhaut , W . 1985 . Long-range transport of trace elements to Ny Alesund, Spitsbergen . Atmos. Environ . 19 , 857 – 865 .  

  26. Rotty , R. M . 1987 . Estimates of seasonal variation in fossil fuel CO2 emissions . Tellus 39B , 184 – 202 .  

  27. Robertson , L. , Langner , J. and Engardt , M . 1998 . An Eulerian limited area atmospheric transport model . J. Appl. Meteor . 38 , 190 – 210 .  

  28. Shaw , G. E. and Khalil , M. A. K . 1989 . Arctic haze. In: The handbook of environmental chemistry , vol. 4B. (ed. O. Hutzinger . Springer-Verlag, Berlin Heidelberg, pp. 69 – 111 .  

  29. Tremback , C. J. , Powell , J. , Cotton , W. R. and Pielke , R. A . 1987 . The forward-in-time upstream advection scheme: Extension to higher orders . Mon. Wea. Rev . 115 , 540 – 555 .  

  30. Trivett , N. B. A. , Worthy , D. E. J. and Brice , K. A . 1989 . Surface measurements of carbon dioxide and methane at Alert during an Arctic haze event in April, 1986 . J. Atmos. Chem . 9 , 383 – 397 .  

  31. Waggoner , A. P. and Weiss , R. E . 1980 . Comparison of fine particle mass concentration and light scattering extinction in ambient aerosol . Atmos. Environ . 14 , 623 – 626 .  

  32. Worthy , D. E. J. , Trivett , N. B. A. , Hopper , J. F. , Bot-tenheim , J. W. and Levin , I . 1994 . Analysis of long-range transport events at Alert, Northwest Territories, during the Polar Sunrise Experiment . J. Geophys. Res . 99D , 25329 – 25344 .  

  33. Yamanouchi , T. , Aoki , S. , Morimoto , S. and Wada , M . 1996 : Report on atmospheric science observations at Ny-Alesund, Svalbard . Mem. Natl Inst. Polar Res. (Spec. Issue) 51 , 153 – 163 .  

  34. Yuen , C. W. , Higuchi , K. , Trivett , N. B. A. and Cho , H.-R . 1996 . A simulation of a large positive CO2 anomaly over the Canadian Arctic archipelago . J. Meteor. Soc. Japan 74 , 781 – 795 .  

  35. Zilitinkevich , S. and Mironov , D. V . 1996 . A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer . Boundary-layer Meteor . 81 , 325 – 351 .  

  36. Zimov , S. A. , Davidov , S. P. , Voropaev , Y. V. , Prosianni-kov , S. F. , Semiletov , I. P. , Chapin , M. C. and Chapin , F. S . 1996 . Siberian CO2 efflux in winter as a CO2 source and cause of seasonality in atmospheric CO2 . Climatic Change 33 , 111 – 120 .  

comments powered by Disqus