Start Submission Become a Reviewer

Reading: Soil erosion and atmospheric CO2 during the last glacial maximum: the rôle of riverine ...

Download

A- A+
Alt. Display

Original Research Papers

Soil erosion and atmospheric CO2 during the last glacial maximum: the rôle of riverine organic matter fluxes

Authors:

Wolfgang Ludwig ,

Ecole et Observatoire des Sciences de la Terre (EOST), ULP/CNRS—Centre de Géochimie de la Surface, 1, rue Blessig, 67084 Strasbourg Cedex; Centre de Formation et de Recherche sur l’Environnement Marin (CEFREM), Université de Perpignan, 52, Avenue de Villeneuve, 66860 Perpignan Cedex, FR
X close

Jean-Luc Probst

Ecole et Observatoire des Sciences de la Terre (EOST), ULP/CNRS—Centre de Géochimie de la Surface, 1, rue Blessig, 67084 Strasbourg Cedex, FR
X close

Abstract

Atmospheric CO2 is consumed both by organic matter formation and chemical rock weathering, and subsequently discharged as dissolved organic carbon, particulate organic carbon, and dissolved inorganic carbon to the oceans by rivers. In the long term, varying the ratio of the amount of atmospheric CO2 consumed by continental erosion and the amount of CO2 released during carbonate precipitation and organic matter respiration in the oceans can change the CO2 content in the atmosphere. The purpose of this paper is to determine whether riverine organic carbon fluxes during the last glacial maximum (LGM) may have been different from today in order to assess the potential impact on atmospheric CO2. Previous studies mainly focused on the role of the river fluxes of inorganic carbon in this respect, but none of them examined possible variations in the fluxes of organic carbon, although the erosion of organic carbon actually represents the bulk of the atmospheric CO2 consumption by continental erosion. We therefore applied a global carbon erosion model to a LGM scenario in order to determine the riverine fluxes of organic matter during that time. The climatic conditions during the LGM were reconstructed using a computer simulation with a general circulation model. It is found that during the LGM the riverine organic carbon input into the oceans was at least ~10% lower than today. Most of the reduction of the total organic matter fluxes is due to the reduction of the fluxes of dissolved organic carbon. The fluxes of particulate organic carbon remained almost unchanged. The oceanic response to the lower carbon input was estimated on the basis of a present-day steady state budget for organic river carbon in the oceans, and implies that the reduction of the river fluxes were more than counterbalanced by lower burial rates due to the smaller shelf area during the LGM. This suggests that both the lower river carbon input and the relatively greater share of this carbon being subjected to oceanic respiration, acted as a negative feedback to the low atmospheric CO2 content during the LGM.

How to Cite: Ludwig, W. and Probst, J.-L., 1999. Soil erosion and atmospheric CO2 during the last glacial maximum: the rôle of riverine organic matter fluxes. Tellus B: Chemical and Physical Meteorology, 51(2), pp.156–164. DOI: http://doi.org/10.3402/tellusb.v51i2.16267
  Published on 01 Jan 1999
 Accepted on 10 Jul 1998            Submitted on 11 Mar 1998

References

  1. Adams , J. M. and Faure , H . 1996 . Changes in moisture balance between glacial and interglacial conditions: influence on carbon cycle processes. In: Global contin-ental changes: the context of palaeohydrology (eds. J. Branson , A. G. Brown and K. J. Gregory ). Geol. Soc. Spec. Publ . 115 , 27 – 42 .  

  2. Adams , J. M. , Faure , H. , Laure-Denard , L. McGlade , J. M. , and Woodward , F. I. 1990 . Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature 348 , 711 – 714 .  

  3. Aston , A. R . 1984 . The effect of doubling atmospheric CO, on streamflow: a simulation . J. Hydrology 67 , 273 – 280 .  

  4. Barnola J. M. , Raynaud, D., Korotkevitch, Y. S. and Lorius, C. 1989. Vostok ice core provides 160 000 year record of atmospheric CO2. Nature 329 , 408 – 414  

  5. Berner , R. A . 1991 . A model for atmospheric CO2 over Phanerozoic time . Amer. J. Sci . 291 , 339 – 376 .  

  6. Berner , R. A. 1994. GEOCARB II : a revised model of atmospheric CO2 over Phanerozoic time. Amer. J. Sci . 294 , 56 – 91  

  7. Berner , R. A. , Lasaga , A. C. and Garrels , R. M . 1983 . The carbonate—silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 mil-lions years . Amer. J. Sci . 283 , 641 – 683 .  

  8. Crowley , T. J . 1995 . Ice age terrestrial carbon changes revisited . Global Biogeochem. Cycles 9 , 377 – 389 .  

  9. Esser , G. and Lautenschlager , M . 1994 . Estimating the change of carbon in the terrestrial biosphere from 18000 b.p. to present using a carbon cycle model . Envionm. Poll . 83 , 45 – 53 .  

  10. Francois , L. M and Walker , J. C. G . 1992 . Modelling the Phanerozoic carbon cycle and climate: constraints from the 87Sr/865r isotopic ratio of seawater . Am. J. Sci . 292 , 81 – 135 .  

  11. Gibbs , M. T. and Kump , L. R . 1994 . Global chemical erosion during the last glacial maximum and the present: Sensivity to changes in lithology and hydro-logy . Palaeoceanography 9 , 529 – 543 .  

  12. Lautenschlager , M . 1991 . Simulations of ice-age atmo-sphere — January and July means . Geol. Rundschau 80 , 513 – 534 .  

  13. Lautenschlager , M. and Herterich , K . 1990 . Atmospheric response to ice age conditions: climatology near the Earth's surface . J. Geophys. Res . 95 , 22547 – 22557 .  

  14. Ludwig , W . Continental erosion and river transport of organic carbon to the world's oceans. Sci. Geol. Mem . (Strasbourg), in press.  

  15. Ludwig , W. and Probst , J. L . 1996 . A global modelling for the climatic, morphological, and lithological con-trol of river sediment discharges to the oceans. In: Erosion and sediment yield: global and regional per - spectives (eds. D. E. Walling and B. W. Webb ). Pro-ceedings of the Exeter Symposium. IAHS Publ. no. 236, IAHS Press, Wallingford, 21 – 28 .  

  16. Ludwig , W. and Probst , J. L . 1998 . River sediment Dis-charge to the Oceans: present-day controls and global budgets . Amer. J. Sci . 298 , 265 – 295 .  

  17. Ludwig , W. , Probst , J. L. and Kempe , S . 1996a . Pre-dicting the oceanic input of organic carbon by contin-ental erosion . Global Biogeochem. Cycles 10 , 23 – 41 .  

  18. Ludwig , W. , Amiotte-Suchet , P. and Probst , J. L . 1996b . River discharges of carbon to the world's oceans: determining local inputs of alkalinity and of dissolved and particulate organic carbon . C. R. Acad. Sci. Paris 323 , 1007 – 1014 .  

  19. Ludwig , W. , Amiotte-Suchet , P. , Munhoven , G. and Probst , J. L. 1998. Atmospheric CO , consumption by continental erosion: present-day controls and implica-tions for the last glacial maximum. Global and Planet-ary Change 16 , 95 – 108  

  20. Ludwig , W. , Amiotte-Suchet , P. and Probst , J. L . Enhanced chemical weathering of rocks during the last glacial maximum: a sink for atmospheric CO2? Chem. Geology , in press .  

  21. Meybeck , M . 1982 . Carbon, nitrogen and phosphorus transport by world rivers . Amer. J. Sci . 282 , 401 – 450 .  

  22. Munhoven , G. and Francois , L. M . 1996 . Glacial—inter-glacial variability of atmospheric CO2 due to changing continental silicate rock weathering. J. Geophys. Res. 101 D16 , 21423 – 21437  

  23. Peltier , W. R . 1994 . Ice age palaeotopography . Science 265 , 195 – 201 .  

  24. Probst J.-L. , Ludwig , W. and Amiotte-Suchet , P . Global modelling of CO, uptake by continental erosion and of carbon river transports to the oceans. In: The global carbon cycle and the terrestrial biosphere (eds. G. Dedieu and J.-L. Probst ). Sciences Geologiques. Bull . 50 , 1-4 (Strasbourg), in press.  

  25. Raymo , M. E. 1994. The Himalayas, organic carbon burial, and climate in the Miocene. Paleoceanography 9 , 399 – 404  

  26. Raymo , M. E. and Rudiman , W. F . 1992 . Tectonic forcing of late Cenozoic climate . Nature 359 , 117 – 122 .  

  27. Raymo , M. E. , Ruddiman , W. F. and Froelich , P. N . 1988 . Influence of late Cenozoic mountain building on ocean geochemical cycles . Geology 16 , 649 – 653 .  

  28. Sharp , M. , Tranter , M. , Brown , G. H. and Skidmore , M . 1995 . Rates of chemical denudation and CO2 draw-down in a glacier-covered alpine catchment . Geology 23 , 61 – 64 .  

  29. Skiles , J. W. and Hanson , J. D . 1994 . Responses of arid and semiarid watersheds to increasin carbon dioxide and climate change as shown by simulation studies . Clim. Change 26 , 377 – 397 .  

  30. Smith , S. V. and Hollibaugh , G. T . 1993 . Coastal meta-bolism and the oceanic organic carbon balance . Rev. Geophys . 31 , 75 – 89 .  

  31. Walker , J. C. G. , Hays , P. B. and Kasting , J. F. A . 1981 . A negative feedback mechanism for the long term stabilisation of Earth's surface temperature . J. Geo-phys. Res . 86 , 9776 – 9782 .  

comments powered by Disqus