Start Submission Become a Reviewer

Reading: On the background photochemistry of tropospheric ozone

Download

A- A+
Alt. Display

Original Research Papers

On the background photochemistry of tropospheric ozone

Authors:

Paul J. Crutzen ,

Max-PLanck-Institute for Chemistry, DE
X close

Mark G. Lawrence,

Max-PLanck-Institute for Chemistry, DE
X close

Ulrich Pöschl

Max-PLanck-Institute for Chemistry, DE
X close

Abstract

We present a largely tutorial overview of the main processes that influence the photochemistry of the background troposphere. This is mostly driven by the photolysis of ozone by solar ultraviolet radiation of wavelengths shorter than about 340 nm, resulting in production of excited O(1D) atoms, whose reaction with water vapor produces OH radicals. In the background atmosphere the OH radicals mostly react with CO, and with CH4 and some of its oxidation products, which in turn are oxidized by OH. Depending on the availability of NOx, catalysts, ozone may be produced or destroyed in amounts that are much greater than the downward flux of ozone from the stratosphere to the troposphere. Using the 3D chemical-transport model MATCH, global distributions and budget analyses are presented for tropospheric O3, CH4, CO, and the “dd hydrogen” compounds OH, HO2 and H2O2. We show that OH is present in maximum concentrations in the tropics, and that most of the chemical breakdown of CO and CH4 also occurs in equatorial regions. We also split the troposphere into continental and marine regions, and show that there is a tremendous difference in photochemical O3 and OH production for these regions, much larger than the difference between the northern hemisphere and southern hemisphere. Finally, we show the results from a numerical simulation in which we reduced the amount of ozone in the model stratosphere by a factor of 10 (which in turn reduced the flux of O3 into the troposphere by about the same factor). Nevertheless, for summer conditions, model calculated O3 mixing ratios below 5 km in the mid to high latitudes were about 70–90% as high as those calculated with the full downward flux of ozone from the stratosphere. This indicates that, at least under these conditions, O3 concentrations in the lower troposphere are largely controlled by in situ photochemistry, with only a secondary influence from stratospheric influx.

How to Cite: Crutzen, P.J., Lawrence, M.G. and Pöschl, U., 1999. On the background photochemistry of tropospheric ozone. Tellus B: Chemical and Physical Meteorology, 51(1), pp.123–146. DOI: http://doi.org/10.3402/tellusb.v51i1.16264
  Published on 01 Jan 1999
 Accepted on 21 Sep 1998            Submitted on 4 Sep 1998

References

  1. Bates , T. S. , Kelly , K. C. , Johnson , J. E. and Gammon , R. H . 1995 . Regional and seasonal variations in the flux of oceanic carbon monoxide to the atmosphere, J. Geophys. Res . 100 , 23,093 – 23,101  

  2. Baughcum , S. L. , Henderson , S. C. , Hertel , P. S. , Mag-giora , D. R. and Oncina , C. A . 1987 . Stratospheric emissions effects database development . NASA CR- 4592 , 1994 .  

  3. Beekmann , M. , Ancellet , G. , Blonsky , S. , DeMuer , D. , Ebel , A. , Elbern , H. , Hendricks , J. , Kowol , J. , Manc-ier , C. , Sladkovic , R. , Smit , H. G. J. , Speth , P. , Trickl , T. and Van Haver , P . 1997 . Regional and global tropo-pause fold occurrence and related ozone flux across the tropopause, ./ . Atmos. Chem . 28 , 29 – 44 .  

  4. Benkovitz , C. M , Scholtz , M. T. , Pacyna , J. , Tarrason , L. , Dignon, J., Voldner, E. C., Spiro, P. A., Logan, J. A. and Graedel, T. E. 1996. Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J. Geophys. Res. 101 , 29,239 – 29,253  

  5. Crutzen , P, J. 1973 . A discussion of the chemistry of some minor constituents in the stratosphere and tro-posphere . Pure Appl. Geophys . 106-108 , 1385 - 1399 .  

  6. Crutzen , P. J . and Andreae , M. O . 1990 . Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles . Science 250 , 1669 – 1678 .  

  7. Crutzen , P. J. and Gidel , L. T . 1983 . A two-dimensional photochemical model of the atmosphere (2) The tro-pospheric budgets of the anthropogenic chlorocarbons Tellus 51A-B (1999), 1  

  8. CO , CH , CH3C1 , and the effects of various NO sources on tropospheric ozone. J. Geophys. Res . 88 , 6641-666 1 .  

  9. Crutzen , P. J. and Zimmermann , P. H . 1991 . The chan-ging photochemistry of the troposphere. Tellus 43A/B, 136 – 151 .  

  10. DeMore , W. B. , Sander , S. P. , Howard , C. J. , Ravishank-ara , A. R. , Golden , D. M. , Kolb , C. E. , Hampson , R. F. , Kurylo , M. J. and Molina , M. J . 1997 . Chemical kinetics and photochemical data for use in stratospheric modeling . NASA JPL (Jet Propulsion Laboratory), Pasadena , California , USA .  

  11. Dentener , F. J. and Crutzen , P. J . 1993 . Reaction of N205 on tropospheric aerosols: Impact on the global distributions of NQ, 03, and OH . J. Geophys. Res . 98 , 7149 – 7163 .  

  12. Dignon , J. and Penner , J. E . 1991 . Biomass burning. A source of nitrogen oxides in the atmosphere. In: Global biomass burning: atmospheric, climate, and biospheric implications (ed. J. S. Levine . MIT Press, Cambridge, USA, 370 – 375 .  

  13. Dlugokencky , E. J. , Steele , L. P. , Lang , P. M. and Masa-rie , K. A . 1994 . The growth and distribution of atmo-spheric methane . J. Geophys. Res . 99 , 17021 – 17043 .  

  14. Ebel , A. , Elbern , H. , Hendricks , J. and Meyer , R . 1996 . Stratosphere-troposphere exchange and its impact on the structure of the lower stratosphere . J. Geomag. Geoelectr . 48 , 135 – 144 .  

  15. Fabian , P. and Junge , C. E . 1970 . Global rate of ozone destruction at the earth's surface . Arch. Met. Geoph. Biokl., Serie A , 19 , 161 – 172 .  

  16. Fung, I. et al. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res . 96 , 13,033 – 13,065 .  

  17. Gettelman , A. , Holton , J. R. and Rosenlof , K. H . 1997 . Mass fluxes of 03, CH, N20, and CF2C12 in the lower stratosphere calculated from observational data. J. Geophys. Res . 102 , 19,149 – 19,159  

  18. Ganzeveld , L. and Lelieveld , J . 1995 . Dry deposition parameterization in a chemistry general circulation model and its influence on the distribution of reactive trace gases. J. Geophys. Res . 100 , 20,999 – 21,012  

  19. Guenther , A. et al. 1995. A global model of natural volatile organic compound emissions. J. Geophys. Res . 100 , 8,873 – 8,892  

  20. Hack , J. J . 1994 . Parameterization of moist convection in the National Center for Atmospheric Research com-munity climate model (CCM2) . J. Geophys. Res . 99 , 5551 – 5568 .  

  21. Hameed , S. and Dignon , J . 1991 . Global emissions of nitrogen and sulphur oxides in fossil fuel combustion 1970-1986. .1. Air Waste Manage. Assoc . 42 , 159 – 163 .  

  22. Hao , W. M. and Liu , M.-H . 1994 . Spatial and temporal distribution of tropical biomass burning . Glob. Biogeo-chem. Cycles 8 , 495 – 503 .  

  23. Holtslag , A. A. M. and Boville , B. A . 1993 . Local versus nonlocal boundary-layer diffusion in a global climate model . J. Climate 6 , 1825 – 1842 .  

  24. Houweling , S. , Dentener , F. and Lelieveld , J . 1998 . The impact of nonmethane hydrocarbon compounds on tropospheric photochemistry . J. Geophys. Res . 103 , 10673 – 10696 .  

  25. Kalnay , E. , Kanamitsu , M. , Kistler , R. , Collings , W. , Deavan, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisu-zaki, W., Higgens, W., Janawiak, J., Mo, K. C., Rope-lewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Joseph, D. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Met Soc . 77 , 437 – 471  

  26. Kley , D. , Crutzen , P. J. , Smit , H. G. J. , Voemel , H. , Oltmans , S. J. , Grassl , H. and Ramanathan , V . 1996 . Observations of near-zero ozone concentrations over the convective Pacific: Effects on air chemistry . Science 274 , 230 – 233 .  

  27. Komhyr , W. D. , Oltmans , S. J. , Franchois , P. R. , Evans , W. F. J. and Matthews , W. A . 1989 . The latitudinal distribution of ozone to 35 km altitude form ECC ozonesonde observations , 1985-1987 . In: Ozone in the atmosphere edited by R. D . Bojkov and P . Fabian , pp. 147 – 150 .  

  28. Krol , M. , Van Leeuwen , P. J. and Lelieveld , J . 1998 . Global OH trend inferred from methylchloroform measurements . J. Geophys. Res . 103 , 10697 – 10711 .  

  29. Landgraf , J. and Crutzen , P. J . 1998 . An efficient method of online calculation of photolysis and heating rates . J. Atmos. Sci . 55 , 863 – 878 .  

  30. Lawrence , M. G . 1996 . Photochemistry in the tropical Pacific troposphere. Studies with a global 3D chemistry-meteorology model. Doctoral dissertation. Georgia Institute of Technology, 520 pp.  

  31. Lawrence , M. G. and Crutzen , P. J . 1998 . The impact of cloud particle gravitational settling on soluble trace gas distributions . Tellus 50B , 263 – 289 .  

  32. Lawrence , M. G. , Chameides , W.L. , Kasibhatla , P.S. , Levy , H. , II and Maxim , W . 1995 . Lightning and atmospheric chemistry: the rate of atmospheric NO production. In: Handbook of atmospheric electrodyn-amics (ed. H. Volland . CRC Press, Inc., Boca Raton, USA, 189 – 202 .  

  33. Levy , H ., II, 1971. Normal atmosphere: large radical and formaldehyde concentrations predicted. Science 173 , 141 – 143  

  34. Levy , H ., II, Mahlman, J. D., Moxim, W. J. and Liu, S. C. 1985. Tropospheric ozone: The role of transport. J. Geophys. Res . 90 , 3753 – 3772  

  35. Mahowald , N. M. , Rasch , P. J , Eaton , B. E. , Whittlestone , B. and Prinn , R. G . 1997 . Transport of 222 Radon to the remote troposphere using MATCH and assimilated winds from ECMWF and NCEP/ NCAR. J. Geophys. Res . 102 , 28,139 – 28,152  

  36. Michelson , H. A. , Salawitch , R. J. , Wennberg , P.O. . and Anderson, J. G. 1994. Production of O(1D) from photolysis of 03. Geophys. Res. Lett . 21 , 2227 – 2230  

  37. Montzka , S. A. et al. 1996 . Decline in the tropospheric abundance of halogens from halocarbons: Implica-tions for stratospheric ozone depletion . Science 272 , 1318 – 1322 .  

  38. Murphy , D. M. and Fahey , D. W . 1994 . An estimate of the flux of stratospheric reactive nitrogen and ozone into the troposhere . J. Geophys. Res . 99 , 5325 – 5332 .  

  39. Murphy , D. M ., Fahey , D. W ., Proffitt , M. H ., Liu , S. C ., Chan , K. R ., Eubank , C. S ., Kawa , S. R . and Kelly , K. K . 1993 . Reactive nitrogen and its correlation with ozone in the lower stratosphere and upper tropo-sphere . J. Geophys. Res . 98 , 8751 – 8773 .  

  40. Olivier , J. G. J. , Bouwman , A. F. , Van der Maas , C. W. M. , Berdowski , J. J. M. , Veldt , C. , Bloos , J. P. J. , Visschedijk , A. J. H. , Zandveld , P. Y. J. and Haverlag , J. L . 1996 . Description of EDGAR Version 2.0. A set of global emission inventories of greenhouse gases and ozone-depleting substances for all anthropogenic and most natural sources on a per country basis and on 1 x 1 grid. RIVM/TNO report, December 1996. RIVM, Bilthoven, RIVM report nr. 771060 002 (TNO MEP report nr. R96/119) .  

  41. Parrish , D. D. , Holloway , J. S. , Trainer , M. , Murphy , P. C. , Forbes , G. L. and Fehsenfeld , F. C . 1993 . Export of North American ozone pollution to the North Atlantic Ocean . Science 267 , 1436 – 1439 .  

  42. Price , C. and Rind , D . 1992 . A simple lightning para-meterization for calculating global lightning distribu-tions . J. Geophys. Res . 97 , 9919 – 9933 .  

  43. Price , C. , Penner , J. and Prather , M . 1997 . NO from lightning (1) . Global distribution based on lightning physics J. Geophys. Res . 102 , 5929 – 5941 .  

  44. Prinn , R. G. Weiss , R. F. , Miller, B. R., Huang, J., Aylea, F. N., Cunnold, D. M., Fraser, P. J., Hartley, D. E. and Simmonds, P. G. 1995. Atmospheric trends and lifetime of CH3CCI3 and global OH concentrations. Science 269 , 187 – 190  

  45. Rasch , P. J. , Mahowald , N. M. and Eaton , B. E . 1997 . Representations of transport, convection, and the hydrologic cycle in chemical transport models: Implications for the modeling of short lived and sol-uble species . J. Geophys. Res . 102 , 28127 – 28138 .  

  46. Rasch , P. J. and Kristjansson , J. E . 1998 . A comparison of the CCM3 model climate using diagnosed and pre-dicted condensate parameterizations . J. Climate , in press .  

  47. Rasch , P. J. and Lawrence , M . 1998 . Recent developments in transport methods at NCAR . In: MPI-Hamburg report No. 265 (ed. B. Machenhauer , pp. 65 – 75 .  

  48. Roelofs , G.-J. and Lelieveld , J . 1995 . Distribution and budget of 03 in the troposphere calculated with a chemistry general circulation model. J. Geophys. Res . 100 , 20,983 – 20,998  

  49. Roelofs , G.-J. and Lelieveld , J . 1997 . Model study of the influence of cross-tropopause 03 transports on tropo-spheric 03 levels . Tellus 49B , 38 – 55 .  

  50. Roelofs , G.-J. , Lelieveld , J. and Ganzeveld , L . 1998 . Simu-lation of global sulfate distribution and the influence on effective cloud drop radii with a coupled photo-chemistry-sulfur model . Tellus 50B , 224 – 242 .  

  51. Schultz , M. , Jacob, D. J., Logan, J. A., Wang, Y., Blake, D. R. 1998. On the origin of tropospheric ozone and NQ over the tropical South Pacific. J. Geophys. Res ., in press .  

  52. Thakur , A. N. , Singh , H.B. ., Mariani, P., Chen, Y., Wang, Y., Jacob, D. J., Brasseur, G., Mueller, J.-F. and Lawrence, M. 1998. Distribution of reactive nitrogen species in the remote free troposphere: data and model comparisons. Atmos. Env ., in press .  

  53. Tie , X. X. and Hess , P . 1997 . Ozone mass exchange between the stratosphere and troposphere for back-ground and volcanic sulfate aerosol conditions. J. Geo-phys. Res . 102 , 25,487 – 25,500  

  54. Wang , Y. , Jacob , D. J. and Logan , J. A . 1998 . Global simulation of tropospheric 03-NQ-hydrocarbon chemistry (3). Origin of tropospheric ozone and effects of nonmethane hydrocarbons . J. Geophys. Res . 103 , 10757 – 10767 .  

  55. Yienger , J. J. and Levy , H. II . 1995 . Empirical model of global soil-biogenic NO emissions. J. Geophys. Res . 100 , 11,447 – 11,464  

  56. Zhang , G. J. and McFarlane , N. A . 1995 . Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model . Atmos. Ocean 33 , 407 – 446 .  

comments powered by Disqus