Start Submission Become a Reviewer

Reading: The direct radiative effect of smoke aerosols on atmospheric absorption of visible sunlight

Download

A- A+
Alt. Display

Original Research Papers

The direct radiative effect of smoke aerosols on atmospheric absorption of visible sunlight

Authors:

Zhanqing Li ,

Canada Centre for Remote Sensing, CA
About Zhanqing
CCRS, 588 Booth Street, Ottawa, Canada, K1A 0Y7.
X close

Linhong Kou

Intermap Technologies, CA
X close

Abstract

Smoke aerosol has a significant effect on the atmospheric radiation budget due to its strong absorbing properties. Observational studies of the smoke radiative effect (SRE) usually suffer from a shortage of in-situ measurements of aerosol optical properties. This study introduces a new approach to determine SRE, i.e. the amount of solar energy absorbed in the atmosphere, under any sky conditions, using satellite and surface measurements. The method requires no observation of aerosol optical properties. It is based on a satellite inversion algorithm that retrieves surface net solar radiation in the visible spectrum (400–700 nm). The algorithm was first validated under a variety of sky conditions ranging from clear, to smoky, and to cloudy skies. It is found that the accuracy of retrieval is affected only by absorbing aerosols such as smoke. Without correction for this effect, the difference between observed and estimated fluxes is a good estimate of SRE. Following this approach, instantaneous, daily and monthly mean SRE were computed, over a study site in the remote boreal forest region of western Canada, where fire activities dominate the variation of aerosol loading during the summer season. The monthly and daytime mean SRE reaches a maximum value of 26.0 W m-2 during a period of active burning in July 1994, in comparison to a total deduction of solar radiation budget by both clouds and smoke of 76.7 W m-2 at the surface within the specified visible solar spectral spectrum.

How to Cite: Li, Z. and Kou, L., 1998. The direct radiative effect of smoke aerosols on atmospheric absorption of visible sunlight. Tellus B: Chemical and Physical Meteorology, 50(5), pp.543–554. DOI: http://doi.org/10.3402/tellusb.v50i5.16237
  Published on 01 Jan 1998
 Accepted on 22 Jul 1998            Submitted on 10 Mar 1998

References

  1. Charlson , R. J. and J. Heintzenberg (eds.), 1995 . Aerosol forcing of climate . John Wiley , Chichester .  

  2. Christopher , S. A. , D. V. Vulcan , J. Chou and R. M. Welch , 1996 . First estimates of the radiative forcing of aerosols from biomass burning using satellite data . J. Geophys. Res. 101 , 21 , 265-21 , 273 .  

  3. Chylek , P. and J. Wong , 1995 . Effect of absorbing aero-sols on global radiation budget . Geophy. Res. Lett . 22 , 929 – 931 .  

  4. Gu , J. and E. Smith , 1997 . High resolution estimates of total solar and PAR surface fluxes over large scale BOREAS study area from GOES measurements . J. Geophys. Res . 102 , 29 , 685-29 , 705 .  

  5. Hansen , J. , M. Sato , A. Lacis and R. Ruedy , 1997 . The missing climate forcing . Phil. Trans. R. Lond. B . 352 , 231 – 240 .  

  6. Hobbs , P. V. , J. S. Reid , R. A. Kotchenruther , R. J. Ferek and R. Weiss , 1997 . Direct radiative forcing by smoke from biomass burning . Science 275 , 1776 – 1778 .  

  7. Intergovernmental Panel on Climate Change , 1995. Cli-mate change 1995. The science of climate change, edited by J. T. Houghton et al. Cambridge University Press , Cambridge, UK , pp. 572.  

  8. Iqbal , M. An introduction to solar radiation . Academic Press , New York , 390 pp. , 1983.  

  9. Kaufman , Y. J. and R. S. Fraser , 1997 . The effects of smoke particles on clouds and climate forcing . Science 277 , 1636 – 1639 .  

  10. Li , Z. , 1998 . Influence of absorbing aerosols on the infer-ence of solar surface radiation budget and cloud absorption. J. Climate 11 , 5 – 17 .  

  11. Li , Z. , J. Cihlar , L. Moreau , F. Huang and B. Lee , 1997 a. Monitoring fire activities in the boreal ecosystem. J. Geophys. Res , 102 , 29,611 – 29,624 .  

  12. Li , Z. , L. Moreau and J. Cihlar , 1997b . Estimation of the photosynthetically active radiation absorbed at the surface over the BOREAS region . J. Geophy. Res . 102 , 29 , 717-29 , 727 .  

  13. Li , Z. and L. Moreau , 1996 . A new approach for remote sensing of canopy absorbed photosynthetically active radiation, I: Total Surface Absorption . Rem. Sens. Environ . 55 , 175 – 191 .  

  14. Markham , B. L. , J. S. Schafer , B. N. Holben and R. N. Halthore , 1997 . Atmospheric aerosols and water vapor characteristics over north central Canada during BOREAS . J. Geophys. Res . 102 , 29737 – 29745 .  

  15. Minnis , P. , W. L. Smith , D. P. Garber , J. K. Ayers and D. R. Doelling , 1995 . Cloud properties derived from GOES-7 for spring 1994 ARM intensive observation period using version 1.0.0 of ARM satellite data ana-lysis program . NASA Reference Publication 1366 , 58 pp .  

  16. Penner , J. E. , R. E. Dickinson and C. A. O’Neill , 1992 . Effects of aerosol from biomass burning on the global radiation budget . Science 256 , 1432 – 1434 .  

  17. Radke , L. F. , D. A. Hegg , J. H. Lyons , C. A. Brock , P. V. Hobbs , R. Weiss and R. Rasmussen , 1988 . Airborne measurements on smoke from biomass burning. Aerosols and Climate , edited by P. V. Hobbs and M. P. McCormick , pp. 411 – 422 . Hampton, VA, Deepak Press.  

  18. Schwartz , S. E. and M. O. Andreae , 1996 . Uncertainties in climate change caused by aerosols . Science 272 , 1121 – 1122 .  

  19. Sellers , P. , F. Hall , H. Margolis , B. Kelly , D. Baldocchi , G. den Hartog , J. Cihlar , M. G. Ryan , B. Goodison , P. Crill , K. J. Ranson , D. Lettenmaier and D. E. Wickland , 1995 . The boreal ecosystem-atmosphere study (BOREAS). An overview and early results from the 1994 field year . Bull. Am. Meteorol. Soc . 76 , 1549 – 1577 .  

  20. Stocks , B. J. 1996 . Monitoring large-scale forest fire behavior in northeastern Siberia using NOAA- AVHRR satellite imagery. In Biomass burning and cli-mate change , edited by J. S. Levine , pp. 802 – 807 . MIT press , Cambridge, Mass.  

  21. Trishchenko , A. and Z. Li , 1998 . Use of ScaRaB measure-ments for validating a GOES-based TOA radiation product . J. Appl. Meteor . 37 , 591 – 605 .  

  22. WCP-12 , 1986. A preliminary cloudless standard atmosphere for radiation computation . World Climate Program, available from the World Meteorological Organization , Geneva, Switzerland , 53pp.  

comments powered by Disqus