Start Submission Become a Reviewer

Reading: The effect of cloud-processing of aerosol particles on clouds and radiation

Download

A- A+
Alt. Display

Original Research Papers

The effect of cloud-processing of aerosol particles on clouds and radiation

Authors:

Nikos Hatzianastassiou,

Laboratoire de Météorologie Physique, Université Blaise Pascal–CNRS–OPGC, FR
About Nikos
Current affiliation: Foundation for Research and Technology-Hellas; Heraklion, 71110 Crete, Greece.
X close

Wolfram Wobrock,

Laboratoire de Météorologie Physique, Université Blaise Pascal–CNRS–OPGC, FR
X close

Andrea I. Flossmann

Laboratoire de Météorologie Physique, Université Blaise Pascal–CNRS–OPGC, FR
X close

Abstract

A detailed spectral microphysics and scavenging model coupled to a dynamic framework describing a medium-sized convective cloud has been used to simulate the evolution of different clouds forming precipitation sized drops in a marine air mass. The resulting drop spectra entered a radiation code to yield the up- and downdwelling radiative fluxes, the cloud optical depth and the cloud albedo. If we start from the scenario that in a perturbed marine environment the number of small aerosol particles has doubled, this can increase the albedo of a cloud forming in this air mass of about 5% with respect to clouds forming in unperturbed conditions. This capacity to increase the cloud albedo, however, is not persistent. The cloud itself changes the particle spectrum. The smallest aerosol particles are reduced by impaction scavenging. The particles between 0.01 μm and 0.1 μm are depleted due to the fact that they serve as CCN and grow through in-cloud processes. Here, our studies have shown, however, that growth due to absorption and oxidation of gases (e.g., SO2) plays a minor róle and that collision and coalescence of drops is the dominant growth mechanism in a region with low gas concentrations like the remote oceans. As a result, an aerosol particle spectrum which has gained small particles due to an enhanced production of new particles seems to relax back to a spectrum similar to the previous undisturbed after cycling through some repeated cloud events.

How to Cite: Hatzianastassiou, N., Wobrock, W. and Flossmann, A.I., 1998. The effect of cloud-processing of aerosol particles on clouds and radiation. Tellus B: Chemical and Physical Meteorology, 50(5), pp.478–490. DOI: http://doi.org/10.3402/tellusb.v50i5.16232
2
Views
  Published on 01 Jan 1998
 Accepted on 17 Jun 1998            Submitted on 16 Mar 1998

References

  1. Ackerman , A. S., O. B. Toon and P. V. Hobbs , 1995. Numerical modeling of ship tracks produced by injec-tions of cloud condensation nuclei into marine stratiform clouds. J. Geophys. Res . 100 , 7121 – 7133 .  

  2. Baker , MB. , R.G. Corbin and J. Latham , 1980 . The influence of entrainment of the evolution of cloud droplet spectra (I). A model of inhomogeneous mixing . Quart. J. R. Meteor. Soc . 106 , 581 – 598 .  

  3. Charlson , R. J., J. E. Lovelock , M. O. Andrae and S. G. Warren , 1987. Oceanic phytoplankton, atmosheric sulphur, cloud albedo and climate. Nature 326 , 655 – 661 .  

  4. Clark , T. L. 1977 . A small scale dynamic model using terrain-followingcoordinatetransformation . J. Comput. Phys . 24 , 186 – 215 .  

  5. Clark , T. L. 1979 . Numerical simulations with a three dimensional cloud model . J. Atmos. Sci . 36 , 2191 – 2215 .  

  6. Clark T. L. and Gall , R. 1982 . Three dimensional numer-ical model simulations of air flow over mountainous terrain: A comparison with observation . Mon. Weather Rev . 110 , 766 – 791 .  

  7. Clark , T. L and Farley , R. D. 1984 . Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting . J. Atmos. Sci . 41 , 329 – 350 .  

  8. Craig , R. A. 1965 . The upper atmosphere, meteorology and physics . Academic Press , New York and London .  

  9. Feingold, G. , S. M. Kreidenweiss , B. Stevens and W. R. Cotton , 1996 . Numerical simulations of stratocumulus processing of cloud condensation nuclei through colli-sion-coalescence . J. Geophys. Res . 101 , 21391 – 21402 .  

  10. Fitzgerald , J. W. 1991 . Marine aerosols. A review . Atmos. Environ . 25A , 533 – 545 .  

  11. Flossmann , A. I. 1991 . The scavenging of two different types of marine aerosol particles using a two-dimen-sional detailed cloud model . Tellus 43B , 301 – 321 .  

  12. Flossmann , A. I. 1994 . A 2-D spectral model simulation of the scavenging of gaseous and particulate sulfate by a warm marine cloud . J. Atmos. Res . 32 , 255 – 268 .  

  13. Flossmann , A. I. 1998 . Interaction of aerosol particles and clouds . J. Atmos. Sci . 55 , 879 – 887 .  

  14. Flossmann , A.I. and H.R. Pruppacher , 1988 . A theoret-ical study of the wet removal of atmospheric pollut-ants. Part III . J. Atmos. Sci . 45 , 1857 – 1871 .  

  15. Flossmann , A. I. , W. D. Hall and H. R. Pruppacher , 1985 . A theoretical study of the wet removal of atmo-spheric pollutants. Part I . J. Atmos. Sci . 42 , 582 – 606 .  

  16. Flossmann , A. I. , H. R. Pruppacher and J. H. Topalian , 1987 . A theoretical study of the wet removal of atmo-spheric pollutants. Part II . J. Atmos. Sci . 44 , 2912 – 2923 .  

  17. Hall , W. D. 1980 . A detailed microphysical model within a two-dimensional dynamic framework. Model description and preliminary results . J. Atmos. Res . 37 , 2486 – 2507 .  

  18. Hatzianastassiou , N. 1997 . Etude de l’effet indirect des particules d’aérosol sur le bilan radiatif lors de cycles nuageux consecutifs. PhD thesis, No. D.U. 935, LaMP (Clermont-Ferrand).  

  19. Hatzianastassiou , N. , W. Wobrock and A. I. Flossmann , 1997 . The role of droplet spectra for cloud radiative properties . Q.J.R. Meteorol. Soc . 123 , 2215 – 2230 .  

  20. Hoppel , W. A. and G. M. Frick , 1990 . Submicron aerosol size distributions measured over the tropical and south Pacific . Atmos. Environm . 24A , 645 – 659 .  

  21. Hoppel , W. A. , J. W. Fitzgerald , G. M. Frick , R. E. Larson and E. J. Mack , 1990 . Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic Ocean . J. Geophys. Res . 95 , 3659 – 3677 .  

  22. IPCC , 1995. Climate change 1995. The science of climate change , eds.: J. T , Houghton , L. G. Meira Filho , B. A. Callander , N. Harris , A. Kattenberg and K. Maskell , Cambridge University Press.  

  23. Jaenicke , R. 1988 . Aerosol physics and chemistry. In: Landolt-Boernstein: Zahlenwerte und Funktionen aus Naturwissenschaften und Technick , V 4b , G. Fischer , ed. Springer, Berlin , pp. 391 – 457 .  

  24. Lee , I. Y. , G. Hanel and H. R. Pruppacher , 1980 . A numerical determination of the evolution of cloud drop spectra due to condensation on natural aerosol particles. J. Atmos. Sc i 37 , 1839 – 1853 .  

  25. Zdunkowski W. G. and P. Breslin , 1979 . A numerical test of two approximate solutions to the radiative transfer equation using the Elsasser scheme . Pure Appl. Geophys . 117 , 927 – 934 .  

  26. Zdunkowski , W. G. , R. M. Welch and G. Korb , 1980 . An investigation of the structure of typical two-stream methods dor the calculation of solar fluxes and heating rates in clouds . Beitr. Phys. Atmos . 53 , 147 – 166 .  

  27. Zdunkowski W. G. , W. G. Panhans , R. M. Welch and G. J. Korb , 1982 . A radiation scheme for circulation and climate models . Beitr. Phys. Atmos . 55 , 215 – 238 .  

comments powered by Disqus