Start Submission Become a Reviewer

Reading: Simulation of global sulfate distribution and the influence on effective cloud drop radii wi...

Download

A- A+
Alt. Display

Original Research Papers

Simulation of global sulfate distribution and the influence on effective cloud drop radii with a coupled photochemistry sulfur cycle model

Authors:

Geert-Jan Roelofs ,

Institute for Marine and Atmospheric Research Utrecht (IMAU), NL
X close

Jos Lelieveld,

Institute for Marine and Atmospheric Research Utrecht (IMAU), NL
X close

Laurens Ganzeveld

Institute for Marine and Atmospheric Research Utrecht (IMAU), NL
X close

Abstract

A sulfur cycle model is coupled to a global chemistry-climate model. The simulated surface sulfate concentrations are generally within a factor of 2 of observed concentrations, and display a realistic seasonality for most background locations. However, the model tends to underestimate sulfate and overestimate surface SO2 at relatively polluted locations. A possible explanation for this is that additional oxidation reactions not considered in the model, may be important. Calculated tropospheric sulfate column abundances exceed those of previous studies, which is predominantly associated with a less efficient nucleation scavenging in wet convective updrafts. Through the simultaneous calculation of the sulfur cycle and tropospheric photochemistry, simulated H2 O2 and SO2 concentrations are strongly linked, especially in polluted areas. The coupled model simulates a stronger oxidant limitation and, consequently, a smaller contribution to sulfate formation by H2 O2 oxidation of SO2 when compared to sulfur cycle models that use monthly averaged oxidant distributions as input. In the polluted NH, the differences in calculated sulfate columns are largest in winter and relatively small in summer. Therefore, the coupling between the sulfur cycle and the oxidant chemistry is expected to have a minor impact on the calculation of the indirect and direct radiative forcing by sulfate. An empirical relation between sulfate concentration and cloud drop number concentration, derived from cloud measurements at Grean Dun Fell (UK), is applied to the simulated cloud and sulfate fields to derive distributions of effective could drop radii. Additionally, a relation between wind speed and cloud drop number concentration is applied over marine regions to account for the effect of seasalt aerosol on cloud formation when sulfate concentrations are relatively low. Calculated droplet radii are systematically underestimated by about 10–20% in the NH compared to satellite derived values, but they agree relatively well in the SH.

How to Cite: Roelofs, G.-J., Lelieveld, J. and Ganzeveld, L., 1998. Simulation of global sulfate distribution and the influence on effective cloud drop radii with a coupled photochemistry sulfur cycle model. Tellus B: Chemical and Physical Meteorology, 50(3), pp.224–242. DOI: http://doi.org/10.3402/tellusb.v50i3.16098
  Published on 01 Jan 1998
 Accepted on 6 Feb 1998            Submitted on 30 Jun 1997

References

  1. Albrecht , B. A. 1989. Aerosols, Cloud microphysics , and fractional cloudiness. Science 245 , 1227 – 1230 .  

  2. Atkinson , R. , Baulch , D. L. , Cox , R. A. , Hampson , R. F. Jr. , Kerr , J. A. and Troe , J. 1992 . Evaluated kinetic and photochemical data for atmospheric chem-istry: Supplement IV . Atmos. Environ . 26A , 1187 – 1230 .  

  3. Ayers , G. P. , Ivey , J. P. and Goodman , H. S. 1986 . Sulfate and methanesulfonate in the maritime aerosol at Cape Grim, Tasmania . J. Atmos. Chem . 4 , 173 – 185 .  

  4. Ayers , G. P. , Ivey , J. P. and Gillett , R. W. 1991 . Coher-ence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulpate in marine air . Nature 349 , 404 – 406 .  

  5. Barrie , L. A. and Bottenheim , J. W. 1991 . Sulphur and nitrogen pollution in the Arctic atmosphere . In: Pollution of the Arctic atmosphere (ed. W. Sturges ), 334 pp. Elsevier , New York .  

  6. Bates , T. S. , Lamb , B. K. , Guenther , A. , Dignon , J. and Stoiber , R. E. 1992 . Sulfur emissions to the atmosphere from natural sources . J. Atmos. Chem . 14 , 315 – 337 .  

  7. Benkovitz , C. M. , Scholtz , M. T. , Pacyna , J. , Tarrason , L. , Dignon , J. , Voldner , E. C. , Spiro , P. A. , Logan , J. A. and Graedel , T. E. 1996 . Global gridded inventor-ies of anthropogenic emissions of sulfur and nitrogen . J. Geophys. Res . 101 , 29239 – 29253 .  

  8. Boucher , O. and Lohmann , U. 1995. The sulfate-CCN-cloud albedo effect. A sensitivity study with two gen-eral circulation models. Tellus 47B , 281 – 300 .  

  9. Charlson , R. J. , Langner , J. , Rodhe , H. , Leovy , C. B. and Warren , S. G. 1991 . Perturbation of northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus 43A/B , 152 – 163 .  

  10. Charlson , R. J. , Schwartz , S. E. , Hales , J. M. , Cess , R. D. , Coakley , J. A. , Hansen , J. E. and Hofmann , D. J. 1992. Climate forcing by anthropogenic aerosols. Science 255 , 423 – 430 .  

  11. Chen , C.-T. and Roeckner , E. 1996 . Validation of the Earth radiation budget as simulated by the Max Planck Institute of Meteorology general circulation model ECHAM4 using satellite observations of the Earth Radiation Budget Experiment . J. Geophys. Res . 101 , 4269 – 4278 .  

  12. Chen , C.-T. and Roeckner , E. 1997 . Cloud simulations with the Max Planck Institute for Meteorology gen-eral circulation model ECHAM4 and comparison with observations . J. Geophys. Res . 102 , 9335 – 9350 .  

  13. Chin , M. , Jacob , D. J. , Gardner , G. M. , Foreman-Fowler , M. , Spiro , P. A. and Savoie , D. L. 1996 . A global three-dimensional model of tropospheric sulfate . J. Geophys. Res . 101 , 18667 – 18690 .  

  14. Chin , M. and Jacob , D. J. 1996 . Anthropogenic and natural distributions to tropospheric sulfate: a global model analysis . J. Geophys. Res . 101 , 18691 – 18699 .  

  15. Choularton , T. W. et al. 1997 . The Great Dun Fell cloud experiment 1993: an overview . Atmos. Environ . 31 , 2393 – 2405 .  

  16. Chuang , C. C. , Penner , J. E. , Taylor , K. E. , Grossman , A. S. and Walton , J. J. 1997 . An assessment of the radiative effects of anthropogenic sulfate . J. Geophys. Res . 102 , 3761 – 3778 .  

  17. Crutzen , P. J. and Zimmermann , P. H. 1991 . The chan-ging photochemistry of the troposphere. Tellus 43A/B , 136 – 151 .  

  18. Dentener , F. J. , Carmichael , G. R. , Zhang , Y. , Lelieveld , J. and Crutzen , P. J. 1996 . The role of mineral aerosol as a reactive surface in the global troposphere . J. Geo-phys. Res . 101 , 22869 – 22889 .  

  19. EMEP Data Report 1986-1992 , 1988-1994. Part 2: monthly and seasonal summaries. EMEP/CCC-Reports 7/88, 2/89, 5/90, 3/91, 3/92, 5/93, 5/94 . Norwegian Institute For Air Research , Lillestrom, Norway .  

  20. Feichter , J. , Kjellström , E. , Rodhe , H. , Dentener , F. , Leli-eveld , J. and Roelofs , G. J. 1996 . Simulation of the tropospheric sulfur cycle in a global climate model . Atmos. Environ . 30 , 1693 – 1707 .  

  21. Feichter , J. , Lohmann , U. and Schult , I. 1997 . The atmo-spheric sulfur cycle in ECHAM-4 and its impact on the shortwave radiation . Clim. Dyn . 13 , 235 – 246 .  

  22. Galloway , J. N. , Savoie , D. L. , Keene , W. C. and Pros-pero , J. M. 1993 . The temporal and spatial variability of scavenging ratios for nss-sulfate, nitrate, methane-sulfonate and sodium in the atmosphere over the North Atlantic Ocean . Atmos. Environ . 27A , 235 – 250 .  

  23. Ganzeveld , L. N. and Lelieveld , J. 1995 . Dry deposition parameterization in a chemistry — general circulation model and its influence on the distribution of chemic-ally reactive trace gases . J. Geophys. Res . 100 , 20999 – 21012 .  

  24. Ganzeveld , L. N. , Lelieveld , J. and Roelofs , G. J. 1998 . A dry deposition parametrization for sulfur oxides in a chemistry-general circulation model . J. Geophys. Res ., in press .  

  25. Ghan , S. J. , Leung , L. R. , Easter , R. C. and Abdul-Razzak , H. 1997 . Prediction of cloud droplet number in a general circulation model . J. Geophys. Res . 102 , 21777 – 21794 .  

  26. Hao , W. M. and Liu , M. H. 1994 . Spatial and temporal distribution of tropical biomass burning . Global Bio-geochem. Cycles 8 , 495 – 503 .  

  27. Han , Q. , Rossow , W. B. and Lacis , A. A. 1994 . Near-global survey of effective droplet radii in liquid water clouds using ISCCP data . J. Climate 7 , 465 – 497 .  

  28. Haskins , R. D. , Barnett , T. P. , Tyree , M. M. and Roeckner , E. 1995 . Comparison of cloud fields from atmospheric general circulation model, in situ and sat-ellite measurements . J. Geophys. Res . 100 , 1367 – 1378 .  

  29. Hicks , B. B. , Baldocchi , D. D. , Meyers , T. P. , Hosker , R. P. Jr. and Matt , D. R. 1987 . A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities . Water, Air, Soil Pollut . 36 , 311 – 330 .  

  30. Intergovernmental Panel on Climate Change IPCC 1996. Climate change 1995, edited by J. T. Houghton , L. G. Meira Filho , B. A. Callander , N. Harris , A. Kattenberg , and K. Maskell . Cambridge University Press , Cambridge , pp. 65 – 130.  

  31. Jacob , D. J. et al. 1997 . Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers . J. Geophys. Res . 102 , 5953 – 5970 .  

  32. Jones , A. , Roberts , D. L. and Slingo , A. 1994 . A climate model study of the indirect radiative forcing by anthro-pogenic sulfate aerosols . Nature 370 , 450 – 453 .  

  33. Jones , A. and Slingo , A. 1996 . Predicting cloud-droplet effective radius and indirect sulphate aerosol forcing using a general circulation model . Q. J. R Meteorol. Soc . 122 , 1573 – 1595 .  

  34. Kasibhatla , P. , Chameides , W. L. and John, J. St . 1997 . A three-dimensional global model investigation of sea-sonal variations in the atmospheric burden of anthro-pogenic sulfate aerosols . J. Geophys. Res . 102 , 3737 – 3760 .  

  35. Kiehl , J. T. and Briegleb , B. P. 1993 . The relative roles of sulfate aerosols and greenhouse gases in climate forcing . Science 260 , 311 – 314 .  

  36. Langner , J. and Rodhe , H. 1991 . A global three-dimen-sional model of the global sulfur cycle . J. Atmos. Chem . 13 , 225 – 236 .  

  37. Lelieveld , J. , Roelofs , G. J. , Ganzeveld , L. , Feichter , J. and Rodhe , H. 1997 . Terrestrial sources and distribu-tion of atmospheric sulphur . Phil. Trans. Roy. Soc . 352 , 149 – 158 .  

  38. Li , S.-M. and Barrie , L. A. 1993 . Biogenic sulfur aerosol in the Arctic troposphere: 1. Contributions to total sulfate . J. Geophys. Res . 98 , 20613 – 20622 .  

  39. Lohmann , U. and Feichter , J. 1997 . Impact of sulfate aerosols in albedo and lifetime of clouds: a sensitivity study with the ECHAM4 GCM . J. Geophys. Res . 102 , 13685 – 13700 .  

  40. Martin , G. M. , Johnson D. W. and Spice , A. 1994 . The measurement and parameterisation of effective radius of droplets in warm stratocumulus clouds . J. Atmos. Sci . 51 , 1823 – 1842 .  

  41. Mason , B. J. 1971 . The physics of clouds, Clarendon Press , Oxford , pp . 593 – 613 .  

  42. O'Dowd , C. D. and Smith , M. H. 1993 . Physico-chemical properties of aerosol over the northeast Atlantic: evid-ence for wind speed related sub-micron sea-salt aerosol production . J. Geophys. Res . 98 , 1132 – 1136 .  

  43. O'Dowd , C. D. Smith , M. H. , Consterdine , I. E. and Lowe , J. A. 1997 . Marine aerosol, seasalt, and the marine sulphur cycle: a short review . Atmos. Environ . 31 , 73 – 80 .  

  44. Penner , J. E. , Atherton , C. S. and Graedel , T. E. 1994 . Global emissions and models of photochemically active compounds. In: Global atmospheric biospheric chemistry , edited by R. G. Prinn . Plenum, New York , pp. 223 – 247 .  

  45. Pham , M. , Muller , J.-F. , Brasseur G. P. , Granier , C. and Mégie , G. 1995 . A three-dimensional study of the tropospheric sulfur cycle . J. Geophys. Res . 100 , 26061 – 26092 .  

  46. Prospero , J. , Savoie , D. L. , Arimoto , R. , Olafsson , H. and Hjartarson , H. 1995 . Sources of aerosol nitrate and non-sea-salt sulfate in the Iceland region . Sci. Total Environ . 160/161 , 181 – 191 .  

  47. Pruppacher , H. R. and Klett , J. D. 1978 . Microphysics of clouds and precipitation , D. Reidel , 714 pp .  

  48. Rasch , P. J. and Williamson , D. 1990 . Computational aspects of moisture transport in global models of the atmosphere . Q. J. R. Meteorol. Soc . 116 , 1071 – 1090 .  

  49. Roeckner , E. , Rieland , M. and Keup , E. 1991 . Modelling of clouds and radiation in the ECHAM model . In: ECMWF/WCRP Workshop on clouds, radiative transfer and the hydrological cycle . ECMWF , 199 – 222 .  

  50. Roeckner , E. , Siebert , T. and Feichter , J. 1995 . Climatic response to anthropogenic sulfate forcing simulated with a general circulation model . In: Aersol forcing of climate (ed. R. J. Charlson and J. Heintzenberg ). John Wiley and Sons , New York , 349 – 362 .  

  51. Roeckner , E. , Arpe , K. , Bengtsson , L. , Christoph , M. , Claussen , M. , Dtimenil , L. , Esch , M. , Giorgetta , M. , Schlese , U. and Schulzweida , U. 1996 . Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution. Report no. 218. Max-Planck-Institute for Meterology, Hamberg, Germany.  

  52. Roelofs , G. J. 1992 . On the drop and aerosol size depend-endence of aqueous phase sulfate formation in a con-tinental cumulus cloud . Atmos. Environ . 26A , 2309 – 2321 .  

  53. Roelofs , G. J. 1993 . A cloud chemistry sensitivity study and comparison of explicit and bulk cloud model per-formance . Atmos. Environ . 27A , 2255 – 2264 .  

  54. Roelofs , G. J. and Lelieveld , J. 1995 . Distribution and budget of 03 in the troposphere calculated with a chemistry - general circulation model . J. Geophys. Res . 100 , 20983 – 20998 .  

  55. Roelofs , G. J. and Lelieveld , J. 1997 . Model study of the influence of cross-tropopause 03 transports on tropo-spheric 03 levels . Tellus 49B , 38 – 55 .  

  56. Savoie , D. L. , Prospero , J. M. Larsen , R. J. Huang , F. , Isaguirre , M. , Huang , T. , Snowdon , T. H. , Custals , L. and Sanderson , C. G. 1993 . Nitrogen and sulfur species in Antarctic aerosols at Mawson, Palmer Station, and marsh (King George Island) . J. Atmos. Chem . 17 , 95 – 122 .  

  57. Savoie , D. L. , Prospero , J. M. , Arimoto , R. and Duce , R. A. 1994 . Non-sea-salt sulfate and methanesulfonate at American Samoa . J. Geophys. Res . 99 , 3587 – 3596 .  

  58. Schwartz , S. E. 1986 . Mass transport considerations per-tinent to aqueous phase reactions of gases in liquid water clouds . In: Multiphase atmospheric chemistry (ed. W. Jaeschke ). Springer Verlag , Berlin , pp. 415 – 471 .  

  59. Schwartz , S. E. 1988 . Mass transport limitation to the rate of in-cloud oxidation of SO2: re-examination in the light of new data . Atmos. Environ . 22 , 2491 – 2499 .  

  60. Scott , B. C. 1978 . Parameterization of sulfate removal by precipitation . J. Appl. Meteor . 17 , 1375 – 1389 .  

  61. Shaw , R. W. and Paur , R. J. 1983 . Measurements of sulfur in gases and particles during sixteen months in the Ohio River Valley . Atmos. Environ . 17 , 1431 – 1438 .  

  62. Spiro , P. A. , Jacob , D. J. and Logan , J. A. 1992 . Global inventory of sulfur emissions with 10 x 10 resolution . J. Geophys. Res . 97 , 6023 – 6036 .  

  63. Sundqvist , H. 1978 . A parameterization scheme for non-convective condensation including prediction of cloud water content . Quart. J. Roy. Meteor. Soc . 104 , 677 – 690 .  

  64. Tiedtke , M. 1989 . A comprehensive mass flux scheme for cumulus parametrization in large-scale models . Mon. Wea. Rev . 117 , 1779 – 1800 .  

  65. Twomey , S. 1974 . Pollution and the planetary albedo . Atmos. Environ . 8 , 1251 – 1256 .  

comments powered by Disqus