Start Submission Become a Reviewer

Reading: Tropospheric ozone depletion in polar regions A comparison of observations in the Arctic and...

Download

A- A+
Alt. Display

Original Research Papers

Tropospheric ozone depletion in polar regions A comparison of observations in the Arctic and Antarctic

Authors:

S. Wessel ,

Alfred-Wegener-Institute of Polar andMarine Research, Research Department Potsdam, DE
X close

S. Aoki,

Centre of Atmospheric and Oceanic Studies, Tohoku University, JP
X close

P. Winkler,

Deutscher Wetterdienst, DE
X close

R. Weller,

Alfred-Wegener-Institute of Polar and Marine Research, DE
X close

A. Herber,

Alfred-Wegener-Institute of Polar andMarine Research, Research Department Potsdam, DE
X close

H. Gernandt,

Alfred-Wegener-Institute of Polar andMarine Research, Research Department Potsdam, DE
X close

O. Schrems

Alfred-Wegener-Institute of Polar and Marine Research, DE
X close

Abstract

The dynamics of tropospheric ozone variations in the Arctic (Ny-Å lesund, Spitsbergen, 79°N, 12°E) and in Antarctica (Neumayer-Station, 70°S, 8°W) were investigated for the period January 1993 to June 1994. Continuous surface ozone measurements, vertical profiles of tropospheric ozone by ECC-sondes, meteorological parameters, trajectories as well as ice charts were available for analysis. Information about the origins of the advected air masses were derived from 5-days back-trajectory analyses. Seven tropospheric ozone minima were observed at Ny-Å lesund in the period from March to June 1994, during which the surface ozone mixing ratios decreased from typical background concentrations around 40 ppbv to values between 1 ppbv and 17 ppbv (1 ppbv O3 corresponds to one part of O3 in 109 parts of ambient air by volume). Four surface ozone minima were detected in August and September 1993 at Neumayer-Station with absolute ozone mixing ratios between 8 ppbv and 14 ppbv throughout the minima. At both measuring stations, the ozone minima were detected during polar spring. They covered periods between 1 and 4 days (Arctic) and 1 and 2 days (Antarctica), respectively. Furthermore, it was found that in both polar regions, the ozone depletion events were confined to the planetary boundary layer with a capping temperature inversion at the upper limit of the ozone poor air mass. Inside this ozone-poor layer, a stable stratification was obvious. Back-trajectory analyses revealed that the ozone-depleted air masses were transported across the marine, ice-covered regions of the central Arctic and the South Atlantic Ocean. These comparable observations in both polar regions suggest a similar ozone destruction mechanism which is responsible for an efficient ozone decay. Nevertheless, distinct differences could be found regarding the vertical structure of the ozone depleted layers. In the Arctic, the ozone-poor layer developed from the surface up to a temperature inversion, whereas in the Antarctic, elevated ozone-depleted air masses due to the influence of catabatic surface winds, were observed.

How to Cite: Wessel, S., Aoki, S., Winkler, P., Weller, R., Herber, A., Gernandt, H. and Schrems, O., 1998. Tropospheric ozone depletion in polar regions A comparison of observations in the Arctic and Antarctic. Tellus B: Chemical and Physical Meteorology, 50(1), pp.34–50. DOI: http://doi.org/10.3402/tellusb.v50i1.16020
  Published on 01 Jan 1998
 Accepted on 1 Sep 1997            Submitted on 15 Jan 1997

References

  1. Anlauf , K. G. , Mickle , R. E. and Trivett , N. B. A. 1994 . Measurement of ozone during Polar Sunrise Experi-ment 1992 . J. Geophys. Res. 99D , 25 345-25 354 .  

  2. Aoki , S. 1995 . A study of tropospheric ozone depletion in the Antarctic. Report for a Grant-in-Aid for scientific research from the Japanese Ministery of Education, Science and Culture(Monbougho) GrantNo. 05640482, Tokyo, available at the National Institute of Polar Research (NIPR), Tokyo.  

  3. Attmannspacher , W. 1971 . Ein einfaches naBchemisches Gerät mit geringer Trägheit zur Messung des boden-nahen Ozons in der Atmosphare . Meteorologische Rundschau 24 , 183 – 188 .  

  4. Barrie , L. A. , Bottenheim , J. W. , Schnell , R. C. , Crutzen , P. J. and Rasmussen , R. A. 1988 . Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere . Nature 334 , 138 – 141 .  

  5. Bottenheim , J. W. , Gallant , A. G. and Brice , K. A. 1986 . Measurements of NO, species and 03 at 82° latitude . Geophys. Res. Lett . 13 , 113 – 116 .  

  6. Bottenheim , J. W. , Barrie , L. A. , Atlas , E. , Heidt , L. E. , Niki , H. , Rasmussen , R. A. and Shepson , P. B. 1990 . Depletion of lower tropospheric ozone during the Arctic spring: The Polar Sunrise Experiment 1988 . J. Geophys. Res . 95D , 18555-18 568 .  

  7. d'Almeida , G. A. , Koepke , P. and Shettle , E. P. 1991 . In: Atmospheric aerosols . Global climatology and radiative characteristics. A Deepak Publishing , Virginia , p. 48 .  

  8. Fan , S.-M. and Jacob , D. J. 1992 . Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols . Nature 359 , 522 – 524 .  

  9. Finlayson-Pitts , B. J. , Livingston , F. E. and Berko , H. N. 1990 . Ozone destruction and bromine photochem-istry at ground level in the Arctic spring . Nature 343 , 622 – 625 .  

  10. Hausmann , M. and Platt , U. 1994 . Spectroscopic meas-urement of bromine oxide and ozone in the high Arctic during Polar Sunrise Experiment 1992 . J. Geophys. Res . 99D , 25399-25 415 .  

  11. Hopper , J. F. and Hart , W. 1994 . Meteorological aspects of the 1992 Polar Sunrise Experiment. J. Geophys. Res . 99D , 25,315 – 25,328 .  

  12. Komhyr , W. D. 1986 . Operations-Handbook. Ozone measurements to 40 km altitude with model 4A electrochem-ical concentration cell (EGG) ozonesondes. NOAA Technical Memorandum, ERL ARL-149, Nat. Oceanic and Atmos. Admin., Washington, D. C.  

  13. LeBras , G. and Platt , U. 1995 . A possible mechanism for combined chlorine and bromine catalysed destruc-tion of tropospheric ozone in the Arctic . Geophys. Res. Lett . 22 , 599 – 602 .  

  14. McConnell , J. C. , Henderson , G. S. , Barrie , L. , Bot-tenheim , J. , Niki , H. , Langford , C. H. and Templeton E. M. J. 1992 . Photochemical bromine production implicated in arctic boundary layer ozone depletion . Nature 355 , 150 – 152 .  

  15. Mozurkewich , M. 1995 . Mechanisms for the release of halogens from sea salt particles by free radical reac-tions . J. Geophys. Res . 100D , 14199-14 208 .  

  16. Murayama , S. , Nakazawa , T. , Tanaka , M. , Aoki , S. and Kawaguchi , S. 1992 . Variations of tropospheric ozone concentration over Syowa Station, Antarctica . Tellus 44B , 262 – 272 .  

  17. Oltmans , S. J. , Komhyr , W. D. , Franchois , P. R. and Matthews , W. A. 1989 . Tropospheric ozone: Variations from surface and ECC ozonesonde observations. In: Ozone in the atmosphere, Proceedings of the Quadren-nial Ozone Symposium 1988 and Tropospheric Ozone Workshop , (eds. R. D. Bojkov , P. Fabian ). A Deepak Publishing, Hampton Virginia , 539 – 543 .  

  18. Ottar , B. 1989 . Arctic air pollution: A Norwegian per-spective . Atmos. Environ . 23 , 2349 – 2356 .  

  19. Schnell , R. C. , Liu , S. C. , Oltmans , S. J. , Stone , R. S. , Hofmann , D. J. , Dutton , E. G. , Deshler , T. , Sturges , W. T. , Harder , J. W. , Sewell , S. D. , Trainer , M. and Harris , J. M. 1991. Decrease of summer tropospheric ozone concentrations in Antarctica. Nature 351 , 726 – 729 .  

  20. Solberg , S. , Schmidbauer , N. , Semb , A. and Stordal , F. 1996 . Boundary-layer ozone depletion as seen in the Norwegian Arctic in spring . J. Atmos. Chem . 23 , 301 – 332 .  

  21. Staebler , R. M. , den Hartog , G. , Georgi , B. and Dtisterd-iek , T. 1994 . Aerosol size distributions in the Arctic haze during Polar Sunrise Experiment 1992. J. Geo-phys. Res . 99D , 25,429 – 25,438 .  

  22. Sturges , W. T. , Sullivan , C. W. , Schnell , R. C. , Heidt , L. E. and Pollock , W. H. 1993 . Bromoalkane production by Antarctic ice algae . Tellus 45B , 120 – 126 .  

  23. Taalas , P. , Kyrö , E. , Supperi , A. , Tafuri , V. and Ginzburg , M. 1993 . Vertical distribution of tropospheric ozone in Antarctica and in the European Arctic . Tellus 45B , 106 – 119 .  

  24. Tang , T. and McConnell , J. C. 1996 . Autocatalytic release of bromine from Arctic snow pack during Polar Sun-rise . Geophys. Res. Lett . 23 , 2633 – 2636 .  

  25. Wessel , S. 1996 . Troposphtirische Ozonvariationen in Polarregionen . PhD Thesis, University of Bremen, Germany, September 1996.  

  26. Wessel , S. , Aoki , S. , Weller , R. , Herber , A. , Gernandt , H. and Schrems , O. 1997 . Aerosol and ozone observations in the polar troposphere at Spitsbergen in spring 1994 . Atmos. Res . 44 , 175 – 189 .  

  27. Worthy , D. E. J. , Trivett , N. B. A. , Hopper , J. F. , Bot-tenheim , J. W. and Levin , I. 1994 . Analysis of long-range transport events at Alert, Northwest Territories, during the Polar Sunrise Experiment . J. Geophys. Res . 99D , 25329 – 25344 .  

  28. Wyputta , U. 1994 . Untersuchungen zum Spurenstofftransport in die Antarktis anhand von Messungen an der Georg-von-Neumayer-Station. PhD Thesis , Hamburg. Berichte aus dem Zentrum fiir Meeres-und Klimaforschung Reihe A , No. 15 .  

  29. Yurganov , L. N. 1990 . Surface layer ozone above the Weddell Sea during the Antarctic spring . Antarctic Science 2 , 169 – 174 .  

comments powered by Disqus