Start Submission Become a Reviewer

Reading: Linking a global terrestrial biogeochemical model and a 2-dimensional climate model: implica...

Download

A- A+
Alt. Display

Original Research Papers

Linking a global terrestrial biogeochemical model and a 2-dimensional climate model: implications for the global carbon budget

Authors:

X. Xiao ,

The Ecosystems Center, Marine Biological Laboratory; The Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, US
X close

D. W. Kicklighter,

The Ecosystems Center, Marine Biological Laboratory, US
X close

J. M. Melillo,

The Ecosystems Center, Marine Biological Laboratory, US
X close

A. D. Mcguire,

The Ecosystems Center, Marine Biological Laboratory; National Biological Service, Alaska Cooperative Fish and Wildlife Research Unit, University of Alaska, US
X close

P. H. Stone,

The Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, US
X close

A. P. Sokolov

The Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, US
X close

Abstract

We used the terrestrial ecosystem model (TEM, version 4.0) to estimate global responses of annual net primary production (NPP) and total carbon storage to changes in climate and atmospheric CO2, driven by the climate outputs from the 2-dimensional MIT L-O climate model and the 3-dimensional GISS and GFDL-q atmospheric general circulation models (GCMs). For contemporary climate with 315 ppmv CO2, TEM estimates that global NPP is 47.9 PgC/yr and global total carbon storage is 1658 PgC: 908 PgC of vegetation carbon and 750 PgC of reactive soil organic carbon. For climate change associated with a doubling of radiative forcing and an atmospheric level of 522 ppmv CO2, the responses of global NPP are + 17.8% for the MIT L-O climate, + 18.5% for the GFDL-q climate and + 20.6% for the GISS climate. The responses of global total carbon storage are + 6.9% for the MIT L-O climate, + 8.3% for GFDL-q climate and + 8.7% for the GISS climate. Among the three climate change predictions, the changes in latitudinal distributions of cumulative NPP and total carbon storage along 0.5° latitudinal bands vary slightly, except in high latitudes. There are generally minor differences in cumulative NPP and total carbon storage for most of the 18 biomes, except for the responses of total carbon storage in boreal biomes for the 2-D MIT L-O climate change. The results demonstrate that the linkage between the TEM and the 2-D climate model is useful for impact assessment and uncertainty analysis within an integrated assessment framework at the scales of the globe, economic regions and biomes, given the compromise between computational efficiency in the 2-D climate model and more detailed spatial representation of climate fields in 3-D GCMs.

How to Cite: Xiao, X., Kicklighter, D.W., Melillo, J.M., Mcguire, A.D., Stone, P.H. and Sokolov, A.P., 1997. Linking a global terrestrial biogeochemical model and a 2-dimensional climate model: implications for the global carbon budget. Tellus B: Chemical and Physical Meteorology, 49(1), pp.18–37. DOI: http://doi.org/10.3402/tellusb.v49i1.15948
  Published on 01 Jan 1997
 Accepted on 6 Jun 1996            Submitted on 20 Sep 1995

References

  1. Aber , J. D . 1992 . Terrestrial ecosystems . In: K. E. Trenberth (ed.): Climate system modeling. Cambridge University Press, New York , 173 – 200 .  

  2. Buol , S. W. , P. A. Sanchez , J. M. Kimble and S. B. Weed . 1990 . Predicted impact of climate warming on soil properties and use. In: B. A. Kimball et al. (eds.): Impact of carbon dioxide, trace gases and climate change on global agriculture. ASA Spec Publ . 53 , 71 – 82 .  

  3. Cramer , W. P. and R. Leemans . 1993 . Assessing impacts of climate change on vegetation using climate classification systems . In: A. M. Solomon and H. H. Shugart (eds.): Vegetation dynamics and global change. Chapman & Hall. New York , 191 – 217 .  

  4. Emanuel , W. R. , H. H. Shugart and M. P. Stevenson . 1985 . Climatic change and the broad-scale distribution of terrestrial ecosystem complexes . Climatic Change 7 , 29 – 43 .  

  5. Esser , G . 1987 . Sensitivity of global carbon pools and fluxes to human and potential climate impact . Tellus 39B , 245 – 260 .  

  6. Esser , G . 1990 . Modeling global terrestrial sources and sinks of CO2 with special reference to soil organic matter . In: A. F. Bouwman (ed.) : Soils and greenhouse effect. John Wiley , New York , 247 - 262 .  

  7. Eswaran , H. , E. Van Der Berg and P. Reich . 1993 . Organic carbon in soils of the world . Soil Science Society of America Journal 57 , 192 – 194 .  

  8. FAO/CSRC/MBL. 1974 . Soil map of the world, 1:5,000,000. Unesco, Paris, France. Digitization (0.5° resolution) by Complex Systems Research Center, University of New Hampshire, Durham and modifications by Marine Biological Laboratory, Woods Hole, USA.  

  9. Gates , D. M . 1985. Global biospheric response to increasing atmospheric carbon dioxide concentration. In: B. R. Strain and J. D. Cure (eds.): Direct effect of increasing carbon dioxide on vegetation. DOE/ER-0238. United States Department of Energy , Wash-ington, D. C., USA. p171 - 184 .  

  10. Hahn , J. , S. G. Warren , J. London and J. L. Roy . 1988 . Climatological data for clouds over the globe from sur-face observation . United States Department of Energy, Oak Ridge , Tennessee , U.S.A .  

  11. Hansen , J. , G. Russel , D. Rind , P. Stone , A. Lacis , S. Lebedeff , R. Ruedy and L. Travis . 1983 . Efficient three dimensional global models for climate studies: Model I and II. Mon . Wea. Re v . 111 , 609 – 662  

  12. Hansen , J. , A. Lacis , D. Rind , G. Russel , P. Stone , I. Fung , R. Ruedy and J. Lerner . 1984. Climate sensitiv-ity: Analysis of feedback mechanisms. In: J. E. Hansen and T. Takahashi (eds.): Climate process and Climate Sensitivity, Geophysical Monograph 29, Maurice Ewing series 5, American Geophysical Union , Washington, D. C. , 130 – 163.  

  13. Houghton , R. A. and G. M. Woodwell . 1989 . Global climatic change . Scientific American 260 , 36 – 47 .  

  14. Idso , S. B. and B. A. Kimball . 1993 . Tree growth in carbon dioxide enriched air and its implications for global carbon cycling and maximum levels of atmospheric CO2 . Global Biogeochemical Cycles 8 , 537 – 555 .  

  15. Idso , K. E. and S. B. Idso . 1994 . Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the last 10 years' research . Agricultural and Forest Meteorology 69 , 153 – 203 .  

  16. IPCC Working Group II. 1996 . Climate change 1995: scientific-technical analysis of impacts , adaptations and mitigation of climate change. Intergovernmental Panel on Climate Change. Cambridge University Press. New York , p19  

  17. IP CC. 1995. Climate Change 1994: Radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Intergovernmental Panel on Cli-mate Change. Cambridge University Press. New York, 196 – 197.  

  18. IP CC. 1994. IPCC WGI report: Radiative forcing of climate change. Intergovernmental Panel on Climate Change. WMO/UNEP, Geneva. p5.  

  19. Jacoby , H. D. and R. G. Prinn . 1994. Uncertainty in climate change policy analysis. MIT Joint Program on the Science and Policy of Global Change Report 1. Massachusetts Institute of Technology, 34pp .  

  20. Jenkinson , D. S. , D. E. Adams and A. Wild . 1991 . Model estimate of CO2 emissions from soil in response to global warming . Nature 351 , 304 – 306 .  

  21. Kimball , B. A . 1975 . Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations . Agronomy Journal 75 , 779 – 788 .  

  22. Leemans , R. and W. P. Cramer . 1991. The IIASA climate database for land areas on a grid with 0.5° resolution. Research Report RR-91-18, International Institute for Applied Systems Analysis (HASA), Laxenburg, Austria. 6Opp.  

  23. Legates , D. R. and C. J. Willmott . 1988 . Global air temperature and precipitation data archive . Department of Geography, University of Delaware, Newark , Delaware , U.S.A .  

  24. Manabe , S. and R. T. Wetherald . 1987 . Large scale changes in soil wetness induced by an increase in carbon dioxide . Journal of the Atmospheric Sciences 44 , 1211 – 1235 .  

  25. McGuire , A. D. , J. M. Melillo , D. W. Kicklighter and L. A. Joyce . 1995 . Equilibrium responses of soil carbon to climate change: empirical and process-based estimates . J. of Biogeography 22 , 785 – 796 .  

  26. McGuire , A. D. , L. A. Joyce , D. W. Kicklighter , J. M. Melillo , G. Esser and C. J. Vorosmarty . 1993 . Productivity response of climax temperate forests to elevated temperature and carbon dioxide: a North America comparison between two global models . Climatic Change 24 , 287 – 310 .  

  27. McGuire , A. D. , J. M. Melillo , L. A. Joyce , D. W. Kicklighter , A. L. Grace , B. Moore III and C. J. Voros-marty . 1992 . Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America . Global Biogeo-chemical Cycles 6 , 101 – 124 .  

  28. Melillo , J. M . 1994 . Modeling land-atmospheric interaction: A short review . In: W. B. Meyer and B. L. Turner (eds). Changes in land use and land cover: a global perspective. Cambridge University Press , 387 – 409 .  

  29. Melillo , J. M. , T. V. Callaghan , F. I. Woodward , E. Salati and S. K. Sinha . 1990 . Climate change effects on eco-systems . In: J. T. Houghton , G. J. Jenkins and J. J. Ephraums (eds.): Climatic change: The IPCC Scientific Assessment . Cambridge University Press , New York. 282 - 310 .  

  30. Melillo , J. M. , A. D. McGuire , D. W. Kicklighter , B. Moore III , C. J. Vorosmarty and A. L. Schloss . 1993 . Global climate change and terrestrial net primary production . Nature 363 , 234 – 240 .  

  31. Melillo , J. M. , D. W. Kicklighter , A. D. McGuire , W. T. Peterjohn and K. M. Newkirk . 1995 . Global change and its effects on soil organic carbon stocks . In: R. G. Zepp and Ch. Sonntag (eds.): Role of nonliving organic matter in the earth's carbon cycle. John Wiley and Sons Ltd , 175 – 189 .  

  32. NCAR/NAVY. 1984 . Global 10-minute elevation data . Digital tape available through National Oceanic and Atmospheric Administration , National Geophysical Data Center , Boulder .  

  33. OE CD. 1992. The economic costs of reducing CO2 emissions. OECD Economic Studies No.19 OECD, Paris, France , 209pp .  

  34. Owensby , C. E. , P. I. Coyne , J. M. Ham , L. M. Auen and A. K. Knapp . 1993 . Biomass production in a tallgrass prairie ecosystem exposed to ambient and elevated CO2 . Ecological Applications 3 , 644 – 653 .  

  35. Pan , Y. , A. D. McGuire , D. W. Kicklighter and J. M. Melillo . 1996 . The importance of climate and soils for estimates of net primary production: A sensitivity analysis with the Terrestrial Ecosystem Model . Global Change Biology 2 , 5 – 23 .  

  36. Parton , W. J. , J. M. O. Scurlock , D. S. Ojima , D. S. Schimel , D. O. Hall a nd SCOPE GRAM group members. 1995. Impact of climate change on grassland production and soil carbon worldwide. Global Change Biology 1, 13 – 22  

  37. Polley , H. W. , H. B. Johnson , B. D. Marino and H. S. Mayeux . 1993 . Increase in C3 plant water use efficiency and biomass over Glacial to present CO2 concentrations . Nature 361 , 61 – 63 .  

  38. Post , W. M. , W. R. Emanuel , P. J. Zinke and A. G. Stangenberger . 1982 , Soil carbon pools and world life zones . Nature 298 , 156 – 159 .  

  39. Potter , C. S. , J. T. Randerson , C. B. Field , P. A. Matson , P. M. Vitousek , H. A. Mooney and S. A. Klooster . 1993 . Terrestrial ecosystem production: a process model based on global satellite and surface data . Global Biogeochemical Cycles 7 , 811 – 841 .  

  40. Raich , J. W. , E. B. Rastetter , J. M. Melillo , D. W. Kicklighter , P. A. Steudler , B. J. Peterson , A. L. Grace , B. Moore III and C. J. Vorosmarty . 1991 . Potential net primary productivity in south America: application of a global model . Ecological Applications 1 , 399 – 429 .  

  41. Rind , D. , R. Healy , C. Parkinson and D. Martinson . 1995 . The role of sea ice in 2 x CO2 climate model sensitivity. Part I: The total influence of sea ice thickness and extent . Journal of Climate 8 , 449 – 463 .  

  42. Rosenzweig , C. and M. L. Parry . 1994 . Potential impact of climate change on world food supply . Nature 367 , 133 – 138 .  

  43. Russell , G. L. , J. R. Miller and L. -C. Tsang 1985: Seasonal ocean heat transport computed from an atmospheric model. Dyn. Atmos. Oceans, 9, 253 – 271  

  44. Schimel , D. S. , B. H. Braswell , E. A. Holland , R. McKeown , D. S. Ojima , T. H. Painter , W. J. Parton and A. R. Townsend . 1994 . Climatic, edaphic and biotic controls over storage and turnover of carbon in soils . Global Biogeochemical Cycles 8 , 279 – 293 .  

  45. Schlesinger , M. E. and Z. Zhao . 1989 . Seasonal climatic changes induced by doubled CO2 as simulated by the OSU atmospheric GCM/mixed-layer ocean model . J. of Climate 2 , 459 – 495 .  

  46. Schlesinger , W. H . 1977 . Carbon balance in terrestrial detritus . Annual Review of Ecology and Systematic 8 , 51 – 81 .  

  47. Sokolov , A. P. and P. H. Stone , 1994 . Climate feedbacks study: results of numerical experiments with 2-dimensional statistical-dynamical model. Abstracts of the AGU 1994 Fall Meeting, Eos.  

  48. Sokolov , A. P. and P. H. Stone . 1995. Description and validation of the MIT version of the GISS 2-D model. MIT Joint Program on the Science and Policy of Global Change Report 2. Massachusetts Institute of Technology, 46pp .  

  49. Stone , P. H. and M. S. Yao . 1987 . Development of a two-dimensional zonally averaged statistical-dynamical model. Part II. The role of eddy momentum fluxes in the general circulation and their parameterization. J. Atmos. Sc i . 44 , 3769 – 3786 .  

  50. Stone , P. H. and M. S. Yao . 1990 . Development of a two-dimensional zonally averaged statistical-dynamical model. Part III. The parameterization of the eddy fluxes of heat and moisture . J. of Climate 3 , 726 – 740 .  

  51. VEMAP Members . 1995 . Vegetation/ecosystem modeling and analysis project (VEMAP): comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling . Global Biogeochemical Cycles 9 , 407 – 437 .  

  52. Vorosmarty , C. J. , B. Moore III , A. L. Grace , M. P. Gildea , J. M. Melillo , B. J. Peterson , E. B. Rastetter and P. A. Steudler . 1989 . Continental scale models of water balance and fluvial transport: an application to South America . Global Biogeochemical Cycle 3 , 241 – 265  

  53. Wetherald , R. T. and S. Manabe . 1988 . Cloud feedback processes in a general circulation model. J. Atmos. Sc i . 45 , 1397 – 1415 .  

  54. Whittaker , R. H. and G. E. Likens . 1973 . Primary production: The biosphere and man . Human Ecology 1 , 357 – 369 .  

  55. Willmott , C. J. , M. R. Clinton and W. D. Philpot . 1985 . Small-scale climate maps: a sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring . The American Cartographer 12 , 5 – 16 .  

  56. Wilson , C. A. and J. F. B. Mitchell . 1987 . A doubled CO2 climate sensitivity experiment with a global cli-mate model including a simple ocean. J. of Geophysical Research 92 , 13315 – 13343 .  

  57. Woodward , F. I. and I. F. KcKee . 1991 . Vegetation and climate . Environment International 17 , 535 – 546 .  

  58. Yao , M. S. and P. H. Stone . 1987 . Development of a two-dimensional zonally averaged statistical-dynamical model. Part I: The parameterization of Moist convection and its role in the general circulation. J. Atmos. Sc i . 44 , 65 – 82 .  

  59. Zh ang, Xinshi. 1993. A vegetation-climate classification system for global change studies in China. Quaternary Sciences 2 , 157 – 169 (in Chinese with English abstract)  

comments powered by Disqus