Start Submission Become a Reviewer

Reading: The dependence of soil H2 uptake on temperature and moisture: a reanalysis of laboratory data

Download

A- A+
Alt. Display

Original Research Papers

The dependence of soil H2 uptake on temperature and moisture: a reanalysis of laboratory data

Authors:

D. H. Ehhalt,

Forschungszentrum Jülich, DE
X close

F. Rohrer

Forschungszentrum Jülich, DE
X close

Abstract

In the past two types of laboratory experiments have been employed to determine the dependence of H2 uptake by soils on temperature and moisture: Head space and flow experiments. The former actually measure the rate constant of the H2 removal from the head space, kH, the latter the uptake rate of H2, U H2, both caused by a given volume of soil. From an analytical solution of the diffusion equation in the soil we derive a mathematical relation between k H and k s, the desired uptake rate constant of H2 in soil. Another equation relates U H2 with k s. Both types of experiments actually determine the product of k s with Θa, the air-filled pore volume fraction. k sa for eolian sand and loess loam show zero uptake at very low and high moisture contents and a well defined maximum in between. Unlike soil moisture which also acts on the soil properties, the soil temperature, T, acts essentially on the enzyme activity only. Thus k s(T) is directly proportional to k H(T) or U H2(T) and the data of all experiments can be superimposed by scaling. The resulting average k s(T) shows a broad maximum around 30◦C with zero uptake below −20◦C and above 80◦C.

How to Cite: Ehhalt, D.H. and Rohrer, F., 2011. The dependence of soil H2 uptake on temperature and moisture: a reanalysis of laboratory data. Tellus B: Chemical and Physical Meteorology, 63(5), pp.1040–1051. DOI: http://doi.org/10.1111/j.1600-0889.2011.00581.x
  Published on 01 Jan 2011
 Accepted on 28 Jul 2011            Submitted on 7 Apr 2011

References

  1. Chowdhury , S.P. and Conrad , R . 2010 . Thermal deactivation of high-affinity H2 uptake in soils . Soil Biol. Biochem . 42 , 1574 – 1580 , doi: https://doi.org/10.1016/j.soilbio.2010.05.027 .  

  2. Conrad , R . 1999 . Soil microorganisms oxidizing atmospheric trace gases (CH, CO, H2, NO) . Indian J. MicrobioL 39 , 193 – 203 .  

  3. Conrad , R. and Seiler , W . 1981 . Decomposition of atmospheric hydrogen by soil-microorganisms and soil enzymes . Soil Biol. Biochem . 13/1 , 43 – 49 .  

  4. Conrad, Rand Seiler, W . 1985 . Influence of temperature, moisture, and organic carbon on the flux of H2 and CO between soil and atmosphere: field studies in subtropical regions . J. Geophys. Res . 90 , 5699 – 5709 .  

  5. Constant , P. , Chowdury , S.P. , Pratscher , J. , and Conrad , R . 2010 . Strep-tomycetes contributing to atmospheric molecular hydrogen soil up-take are widespread and encode a putative high- affinity [NiFe]-hydrogenase . Environ. MicrobioL 12 , 821 – 829 , doi: https://doi.org/10.1111/j.1462-2920.2009.0230  

  6. Ehhalt , D.H. and Rohrer , E 2009 . The tropospheric cycle of H2: a critical review . Tellus 61B , 500 – 535 , doi: https://doi.org/10.1111/j.1600-0889.2009.00416.x .  

  7. Fallon , RD . 1982 . Influences of pH, temperature, and moisture on gaseous tritium uptake in surface soils . AppL Environ. MicrobioL 44 , 171 – 178 .  

  8. Förstel , H . 1986 . Uptake of elementary tritium by the soil . Radiat. Prot. Dosim . 16 , 75 – 81 .  

  9. Guo , R. and Conrad , R . 2008 . Extraction and characterization of soil hydrogenases oxidizing atmospheric hydrogen . Soil Bio. Biochem . 40 , 1149 – 1154 , doi: https://doi.org/10.1016/j.soilbio.2007.12007 .  

  10. Hauglustaine D.A. and Ehhalt D.H . 2002 . A three-dimensional model of molecular hydrogen in the troposphere . J. Geophys. Res . 107 , 4330 , doi: https://doi.org/10.1029/2001JDO01156 .  

  11. Liebl , K.H. and Seiler , W . 1976 . CO and H2 destruction at the soil surface. In: Production and Utilisation of Gases (eds HG. Schlegel , G. Gottschalk , and N. Pfenning ) E. Goltze KG Göttingen , Germany , 215 - 229 .  

  12. Millington , R.J. and Quirk , J.M . 1961 . Permeability of porous solids . Trans. Faraday Soc . 57 , 1200 – 1207 .  

  13. Novelli , P. C. , Lang , P.M. , Masarie , K.A. , Hurst , D.E. , Myers , R. and Ellcins , J.W . 1999 . Molecular hydrogen in the troposphere: global distribution and budget . J. Geophys. Res . 104 : 30427 – 30444 .  

  14. Price , H. , Jaegle , L. , Rice , A. , Quay , P. , Novelli , P.C. and Gammon , R . 2007 . Global budget of molecular hydrogen and its deuterium con-tent: constraints from ground station, cruise, and aircraft observations . J. Geophys Res . 112 , D22108 , doi: https://doi.org/10.1029/2006JDO08152 .  

  15. Rhee , T.S. , Brenninlcmeijer , C.A.M. and Rockmann , T . 2006 . The over-whelming role of soils in the global atmospheric hydrogen cycle . Atmos. Chem. Phys . 6 , 1611 – 1625 .  

  16. Sanderson , M.G. , Collins , W.J. , Derwent , R.G. and Johnson , C.E . 2003 . Simulation of global hydrogen levels using a Lagrangian three-dimensional model . J. Atmos. Chem . 46 ( 1 ), 15 – 28 .  

  17. Scheffer , F. and Schachtschabel , P . 2010 . Lehrbuch der Bodenkunde, 16. Auflage, Spektrum, Alcademischer Verlag , Heidelberg .  

  18. Schmitt , S. , Hanselmann , A. , Wollschläger , U. , Hammer , S. and Levin , I . 2009 . Investigation of parameters controlling the soil sink of atmospheric molecular hydrogen . Tellus 61B , 416 – 423 , doi: https://doi.org/10.1111/j.1600-0889.2008.00402.x .  

  19. Schuler , S. and Conrad , R . 1990 . Soils contain two different activities for oxidation of hydrogen . FEMS MicrobioL EcoL 73 , 77 – 84 .  

  20. Schuler , S. and Conrad , R . 1991 . Hydrogen oxidation activities in soil as influenced by pH, temperature, moisture, and season . Biol. Fertility Soils 12 , 127 – 130 .  

  21. Schultz , M.G. , Diehl , T. , Brasseur , G.P. and Zittel , W . 2003 . Air pollution and climate-forcing impacts of a global hydrogen economy . Science 302 , 624 – 627 .  

  22. Seiler , W. , Liebl , K.H. , Stöhr , W.Th. and Zakosek, H. 1977. CO- and H2-Abbau in Widen. Z. fiir Pflanzenemiihrung und Bodenkunde 140 , 257 - 272 .  

  23. Smith-Downey , NN. , Randerson , J.T. and Eiler , J.M . 2006 . Temperature and moisture dependence of soil H2 uptake measured in the laboratory . Geophys. Res. Lett . 33 , L14813 , doi: https://doi.org/10.1029/2006GL026749 .  

  24. Tromp , T.K. , Shia , R.-L. , Allen , M. , Eiler , J.M. and Yung , Y.L . 2003 . Potential environmental impact of a hydrogen economy on the strato-sphere . Science 300 , 1740 – 1742 .  

  25. Warwick , N.J. , Beklci , S. , Nisbet , E.G. and Pyle , J.A . 2004 . Im-pact of a hydrogen economy on the stratosphere and tropo-sphere studied in a 2-D model . Geophys. Res. Lett . 31 , L05107 , doi: https://doi.org/10.1029/2003GL019224 .  

  26. Yonemura , S. , Kawashima , S. and Tsuruta , H . 1999 . Continu-ous measurements of CO and H2 deposition velocities onto an andisol : uptake control by soil moisture Tellus 51B , 688 – 700 .  

  27. Yonemura , S. , Kawashima , S. and Tsuruta , H . 2000b . Carbon monoxide, hydrogen, and methane uptake by soils in a tem-perate arable field and a forest . J. Geophys. Res . 105 , 14347 – 14362 .  

  28. Yonemura , S. , Yokozawa , M. , Kawashima , S. and Tsuruta , H . 2000a . Model analysis of the influence of gas diffusivity in soil on CO and H2 uptake , Tellus 52B , 919 – 933 .  

comments powered by Disqus