Start Submission Become a Reviewer

Reading: Sea ice contribution to the air–sea CO2 exchange in the Arctic and Southern Oceans

Download

A- A+
Alt. Display

Original Research Papers

Sea ice contribution to the air–sea CO2 exchange in the Arctic and Southern Oceans

Authors:

Søren Rysgaard ,

Greenland Climate Research Centre, Greenland Institute of Natural Resources, GL; Centre for Earth Observation Science, CHR Faculty of Environment Earth and Resources, University of Manitoba, CA
X close

Jørgen Bendtsen,

Greenland Climate Research Centre, Greenland Institute of Natural Resources, GL; Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, DK
X close

Bruno Delille,

Unité d’Oceanographie Chimique, Interfacultary Centre for Marine Research, Université de Liége, BE
X close

Gerhard S. Dieckmann,

Alfred Wegener Institute for Polar and Marine Research, DE
X close

Ronnie N. Glud,

Greenland Climate Research Centre, Greenland Institute of Natural Resources, GL; Scottish Association of Marine Sciences, Scotland UK, Southern Danish University and NordCee, DK
X close

Hilary Kennedy,

School of Ocean Sciences, Bangor University, GB
X close

John Mortensen,

Greenland Climate Research Centre, Greenland Institute of Natural Resources, GL
X close

Stathys Papadimitriou,

School of Ocean Sciences, Bangor University, GB
X close

David N. Thomas,

School of Ocean Sciences, Bangor University, UK; Finnish Environment Institute (SYKE), Marine Research Centre, FI
X close

Jean-Louis Tison

Glaciology Unit, Department of Earth and Environmental Sciences, BE
X close

Abstract

Although salt rejection from sea ice is a key process in deep-water formation in ice-covered seas, the concurrent rejection of CO2 and the subsequent effect on air–sea CO2 exchange have received little attention. We review the mechanisms by which sea ice directly and indirectly controls the air–sea CO2 exchange and use recent measurements of inorganic carbon compounds in bulk sea ice to estimate that oceanic CO2 uptake during the seasonal cycle of sea-ice growth and decay in ice-covered oceanic regions equals almost half of the net atmospheric CO2 uptake in ice-free polar seas. This sea-ice driven CO2 uptake has not been considered so far in estimates of global oceanic CO2 uptake. Net CO2 uptake in sea-ice–covered oceans can be driven by; (1) rejection during sea–ice formation and sinking of CO2-rich brine into intermediate and abyssal oceanic water masses, (2) blocking of air–sea CO2 exchange during winter, and (3) release of CO2-depleted melt water with excess total alkalinity during sea-ice decay and (4) biological CO2 drawdown during primary production in sea ice and surface oceanic waters.

How to Cite: Rysgaard, S., Bendtsen, J., Delille, B., Dieckmann, G.S., Glud, R.N., Kennedy, H., Mortensen, J., Papadimitriou, S., Thomas, D.N. and Tison, J.-L., 2011. Sea ice contribution to the air–sea CO2 exchange in the Arctic and Southern Oceans. Tellus B: Chemical and Physical Meteorology, 63(5), pp.823–830. DOI: http://doi.org/10.1111/j.1600-0889.2011.00571.x
12
Views
5
Downloads
  Published on 01 Jan 2011
 Accepted on 9 Jun 2011            Submitted on 15 Dec 2010

References

  1. Anderson , L. G. , Falck , E. , Jones , E. P. , Jutterström , S. and Swift J. H . 2004 . Enhanced uptake of atmospheric CO2 during freezing of seawater: a field study in Storfjorden, Svalbard . J. Geophys. Res . 109 , C06004 , doi: https://doi.org/10.1029/2003JC002120 .  

  2. Arrigo , K. R. , Pabi , S. , van Dijken , G. and Maslowslci , W . 2010 . Air-sea flux of CO2 in the Arctic Ocean, 1998-2003 . J. Geophys. Res . 115 , G04024 , doi: https://doi.org/10.1029/2009JG001224 .  

  3. Arrigo , K. R. , van Dijken , G. and Pabi , S . 2008 . Impact of a shrinking Arctic ice cover on marine primary production . Geophys. Res. Lett . , 35 , L19603 , doi: https://doi.org/10.1029/2008GL035028 .  

  4. Assur , A . 1960 . Composition of sea ice and its tensile strength . SIPRE Research Report 44 .  

  5. Bates , N. R. and Mathis , J. T . 2009 . The Arctic Ocean marine carbon cycle: evaluation of the air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks . Biogeosciences 6 , 2433 – 2459 .  

  6. Bouttes , N. , Paillard , D. and Roche , D. M . 2010 . Impact of brine-induced stratification on the glacial carbon cycle . Clim. Past 6 , 575 – 589 .  

  7. Bönisch , G. and Schlosser , P . 1995 . Deep water formation and exchange rates in the Greenland/Norwegian seas and the Eurasian Basin of the Arctic Ocean derived from tracer balances . Prog. Oceanogr 35 , 29 – 52 .  

  8. Cai , W.-J. , Chen , L. , Chen , B. , Gao , Z. , Lee , S. H. and co-authors . 2010 . Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science 329 , 556 - 559 .  

  9. Comisio , J. C . 2010 . Variability and trends of the global sea ice cover. In: Sea Ice . 2nd Edition. (eds Thomas, D. N. and Diecicmann, G. S. ). Wiley-Blackwell, Oxford, UK, 205 - 246 .  

  10. Comisio , J. C. and Nishio , F . 2008 . Trends in the sea ice cover us-ing enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res . 113 , CO2507 , doi: https://doi.org/10.1029/2007JC004257 .  

  11. Cox , G. F. N. and Weeks , W. F . 1983 . Equations for determining the gas and brine volumes in sea-ice samples . J. Glaciol . , 29 , 306 – 316 .  

  12. Delille , B. , Jourdain , B. , Borges , A. V. , Tison , J.-P. and Delille , D. 2007 . Biogas (CO2. 02, dimethylsulfide) dynamics in spring Antarctic fast ice . Limnol. Oceanogr 52 , 1367 - 1379 , doi: https://doi.org/10.4319/10.2007.52.4.1367 .  

  13. Dieckmann , G. S. , Nehrke , G. , Papadimitriou , S. , Göttlicher , J. , Steininger , R. and co-authors . 2008 . Calcium carbonate as ilcaite crystals in Antarctic sea ice. Geophys. Res. Lett . 35 , L08501 , doi: https://doi.org/10.1029/2008GL033540 .  

  14. Dieckmann , G. S. , Nehrke , G. , Uhlig , C. , Göttlicher , J. , Gerland , S. and co-authors . 2010 . Brief communication: ilcaite (CaCO3 * 6H20) discovered in Arctic sea ice. Ciyosphere Discuss . 4 , 153 - 161 .  

  15. Eicken , H . 1992 . Salinity profiles of Antarctic sea ice: Field data and model results. J. Geophys. Res . 97 ( C10 ), 15 545-15 557, doi: https://doi.org/10.1029/92JC01588 .  

  16. Fransson , A. , Chierici , M. and Nojiri , Y . 2009 . New insights into the spatial variability of the surface water carbon dioxide in varying sea ice concentrations in the Arctic Ocean . Continental Shelf Res . 29 , 1317 – 1328 .  

  17. Gibson , J. A. E. and Trull , T. W . 1999 . Annual cycle of CO2 under sea-ice and in open water in Prydz Bay, East Antarctica. Mar Chem . 66 , 187 - 200 . American Geophysical Union, Washington, DC  

  18. Gleitz , M. v. d. Loeff , M. R. , Thomas , D. N. , Dieckmann , G. S. and Millero , F. J. 1995. Comparison of summer and winter inorganic carbon, oxygen and nutrient concentrations in Antarctic sea ice brine. Mar Chem . 51 , 81 - 91 .  

  19. Glud , R. N. , Rysgaard , S. and Kiihl , M . 2002 . A laboratory study on 02 dynamics and photosynthesis in ice algal communities: quantifi-cation by microsensors, 02 exchange rates, 14C incubations and PAM fluorometer . Aquat. Microb. Ecol . 27 , 301 – 311 .  

  20. Golden , K. M. , Ackley , S. F. and Lytle , V . 1. 1998 . The percolation phase transition in sea ice . Science 282 , 2238 – 2241 .  

  21. Golden , K. M. , Eicken , H. , Heaton , A. L. , Miner , J. , Pringle , D. J. , and co-authors . 2007 . Thermal evolution of permeability and microstructure in sea ice . Geophys. Res. Lett . 34 , L16501 , doi: https://doi.org/10.1029/2007GL030447 .  

  22. Homer , R. and Schrader , G. C . 1982 . Relative contributions of ice al-gae, phytoplankton and benthic microalgae to primary production in nearshore regions of the Beaufort Sea . Arctic , 35 , 485 – 503 .  

  23. Jones , E. P. , Coote , A. R. and Levy , E. M . 1983 . Effect of sea ice meltwater on the alkalinity of seawater . J. Mar. Res . 41 , 43 – 52 .  

  24. Jones , E. M. , Bakker , D. C. E. , Venables , H. J. , Whitehouse , M. J. , Korb , R. E. , and co-authors . 2010 . Rapid changes in surface water carbonate chemistry during Antarctic sea ice melt. Tellus B . 62B , 621 - 635 .  

  25. Jones , E. P. and Coote , A. R . 1981 . Oceanic CO2 produced by the precipitation of CaCO3 from brines in sea ice . J. Geophys. Res . 86 , 11 041-11 043 .  

  26. Jutterström , S. and Anderson , L. G . 2010 . Uptake of CO2 by the Arctic Ocean in a changing climate . Mar Chem . 122 , 96 – 104 .  

  27. Kelley , J . 1967 . Carbon dioxide in seawater under the arctic ice . Nature 218 , 862 – 864 .  

  28. Killawee , J. A. , Fairchild , I. J. , Tison , J.-L. , Janssens , L. and Lorrain , R . 1998 . Segregation of solutes and gasses in experimental freezing of dilute solutions: implications for natural glacial systems . Geochim. Cosmochim. Acta 62 , 3637 – 3655 .  

  29. Kwok , R. , Cunningham , G. F. , Wensnahan , M. , Rigor , I. , Zwally , H. J. , and co-authors . 2009 . Thinning and volume loss of the Arc-tic Ocean sea ice cover: 2003-2008. J. Geophys. Res . 114 , C07005 , doi: https://doi.org/10.1029/2009JC005312 .  

  30. Loose , B. , Schlosser , P. , Perovich , D. , Ringelberg , D. , Ho , D. T. and co-authors . 2011 . Gas diffusion through columnar laboratory sea ice: implications for mixed-layer ventilation of CO2 in the seasonal ice zone. Tellus 63B , 23 - 39 .  

  31. Martinson , D. G. and Steele , M . 2001 . Future of the Arctic sea ice cover: implications of an Antarctic analog . Geophys. Res. Lettt . 28 ( 2 ), 307 – 310 .  

  32. McLaren , A. J. , Banks , H. T. , Durman , C. F. , Gregory , J. M. , Johns , T. C. and co-authors . 2006 . Evaluation of the sea ice simulation in a new coupled atmospheric-ocean climate model (HadGEM1). J. Geo-phys. Res . 111 , C12014 , doi: https://doi.org/10.1029/2005JC003033 .  

  33. Milckelsen , D. M. , Rysgaard , S. and Glud , R. N . 2008 . Microalgal com-position and primary production in Arctic sea ice: a seasonal study from Kobbefjord (Kangerluarsunnguaq), West Greenland . Mar EcoL Prog. Ser 368 , 65 – 74 , doi: https://doi.org/10.3354/meps07627 .  

  34. Mucci , A. , Lansard , B. , Miller , L. A. and Papalcyriakou , T. N . 2010 . CO2 fluxes across the air-sea interface in the southeast-ern Beufort Sea: ice-free period . J. Geophys. Res . 115 , C04003 , doi: https://doi.org/10.1029/2009JC005330 .  

  35. Nedashkovsky , A. P. , Khvedynich , S. V. and Petovsky , T. V . 2009 . Alka-linity of sea ice in the high-latitudinal arctic according to the surveys performed at north pole drifting station 34 and characterization of the role of the arctic in the CO2 exchange . Mar Chem . 49 , 55 – 63 , doi: https://doi.org/10.1134/s000143700901007x .  

  36. Nomura , D. , Yoshikawa-Inoue , H. and Toyota , T . 2006 . The effect of sea-ice growth on air-sea CO2 flux in a tank experiment . Tellus 58B , 418 – 426 , doi: https://doi.org/10.1111/j.1600-0889.2006.00204.x .  

  37. Notz , D. and Worster , M. G . 2009 . Desalination processes of sea ice revisited . J. Geophys. Res . 114 , C05006 , doi: https://doi.org/10.1029/2008JC004885 .  

  38. Omar , A. , Johannessen , T. , Bellerby , R. G. J. , Olsen , A. , Anderson , L. G. , and co-authors . 2005 . Sea-ice and brine formation in Stor-fjorden: implications for Arctic wintertime air-sea CO2 flux. In: The Nordic Seas: An Integrated Perspective (eds Drange, H. , Dokken, T. , Furevilc, T. , Gerdes, R. and Berger W. ) Geophysical Monograph 158, American Geophysical Union, Washington, DC, 117 - 187 .  

  39. Papadimitriou , S. , Kennedy , H. , Kattner , G. , Dieckmann , G. S. and Thomas , D. N . 2003 . Experimental evidence for carbonate precipi-tation and CO2 degassing during sea ice formation . Geochim. Cos-mochim. Acta 68 , 1749 – 1761 , doi: https://doi.org/10.1016/j.gca.2003.07.004 .  

  40. Petrich , C. and Eicken , H . 2010 . Growth, structure and properties of sea ice. In: Sea Ice . 2nd Edition. (ed. Thomas, D. N. and Dieckmann, G. S. ). Wiley-Blackwell, Oxford, UK, 23 - 78 .  

  41. Rudels , B. , Björk , G. , Nilsson , J. , Winsor , R , Lake , I. and co-authors . 2005 . The interaction between waters from the Arctic Ocean and the Nordic Seas north of Fram Strait and along the East Greenland Current: results from the Arctic Ocean-02 Oden expedition. J. Marine Syst . 55 , 1 - 30 , doi: https://doi.org/10.1016/j.jmarsys2004.06.008 .  

  42. Rysgaard , S. , Bendtsen , J. , Pedersen , L. T. , Ramlov , H. and Glud , R. N . 2009 . Increased CO2 uptake due to sea ice growth and decay in the Nordic Seas . J. Geophys. Res . 114 , C09011 , doi: https://doi.org/10.1029/2008JC005088 .  

  43. Rysgaard , S. , Glud , R. N. , Sejr , M. K. , Bendtsen , J. and Christensen , P. B . 2007 . Inorganic carbon transport during sea ice growth and decay: a carbon pump in polar seas . J. Geophys. Res . 112 , C03016 , doi: https://doi.org/10.1029/2006JC003572 .  

  44. Rysgaard , S. , Nielsen , T. G. and Hansen , B. W . 1999 . Seasonal variation in nutrients, pelagic primary production and grazing in a high-Arctic coastal marine ecosystem, Young Sound, Northeast Greenland . Mar EcoL Prog. Ser 179 , 13 – 25 .  

  45. Rysgaard , S. , Thamdrup , B. , Risgaard-Petersen , N. , Fossing , H. , Berg , P. and co-authors . 1998 . Seasonal carbon and nutrient mineralization in a high-Arctic coastal marine sediment, Young Sound, Northeast Greenland. Mar Ecol. Prog. Ser 175 , 261 - 276 .  

  46. Sabine , C. L. , Feely , R. A. , Gruber , N. , Key , R. M. , Lee , K. and co-authors . 2004 . The oceanic sink for anthropogenic CO2. Science 305 , 367 - 371 .  

  47. Sejr , M. K. , Krause-Jensen , D. , Rysgaard , S. , Sorensen , L. L. , Christensen , P. B. , and co-authors . 2011 . Air-sea flux of CO2 in arctic coastal waters influenced by glacier melt water and sea ice. Tellus B , doi: https://doi.org/10.1111/j.1600.0889.2011.00540.x  

  48. Semiletov , I. , Malcshtas , A ., Akasofu , S.-I. and Andreas , E. L. 2004. Atmospheric CO2 balance: the role of Arctic sea ice. Geophys. Res. Lett . 31 , L05121 , doi: https://doi.org/10.1029/2003GL017996 .  

  49. Shcherbina , A. Y. , Talley , L. D. and Rudnick , D. L . 2003 . Direct obser-vations of North Pacific ventilation: Brine rejection in the Okhotsk Sea . Science 302 , 1952 – 1955 .  

  50. Skogseth , R. , Haugan , P. M. and Haarpaintner , J . 2004 . Ice and brine production in Storfjorden from four winters of satellite and in situ observations and modeling . J. Geophys. Res . , 109 , C10008 , doi: https://doi.org/10.1029/2004JC002384 .  

  51. Takahashi , T. , Sutherland S. C. , Wanninlchof , R. , Sweeney , C. , Feely , R. A. , and co-authors . 2009 . Climatological mean and decadal changes in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res./1 56 , 554 - 577 .  

  52. Tison , J.-L. , Haas , C. , Gowing , M. M. , Sleewaegen , S. and Bernard , A . 2002 . Tank study of physio-chemical controls on gas content and composition during growth of young sea ice . J. Glaciol . 48 , 177 – 191 .  

  53. Weeks , W. E and Ackley , S. F . 1986 . The growth, structure and proper-ties of sea ice. In: The Geophysics of Sea Ice (ed. Untersteiner, N. ). Plenum , New York .  

  54. Worby , A. P. , Geiger , C. A. , Paget , M. J. , van Woert , M. L. , Ackley , S. E , and co-authors . 2008 . Thickness distribution of Antarctic sea ice. J. Geophys. Res . 113 , C05592 , doi: https://doi.org/10.1029/2007JC004254 .  

  55. Yamamoto-Kawai , M. , McLaughlin , F. A. , Carmack , E. C. , Nishino , S. and Shimada , K . 2009 . Aragonite undersaturation in the Arctic Ocean: effects of ocean acidification and sea ice melt . Science 326 , 1098 – 1100 .  

  56. Zeebe , R. E. and Wolf-Gladrow , D. A . 2001 . CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Oceanography Series . Volume 65, Elsevier, Amsterdam, 346.  

  57. Zhang , J . 2007 . Increasing Antarctic sea ice under warming atmospheric and oceanic conditions . J. Clim . 20 , 2515 – 2529 .  

comments powered by Disqus