Start Submission Become a Reviewer

Reading: Separating remote fetch and local mixing influences on vertical radon measurements in the lo...

Download

A- A+
Alt. Display

Original Research Papers

Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere

Authors:

S. Chambers ,

Australian Nuclear Science and Technology Organisation, Institute for Environmental Research, AU
X close

A. G. Williams,

Australian Nuclear Science and Technology Organisation, Institute for Environmental Research, AU
X close

W. Zahorowski,

Australian Nuclear Science and Technology Organisation, Institute for Environmental Research, AU
X close

A. Griffiths,

Australian Nuclear Science and Technology Organisation, Institute for Environmental Research, AU
X close

J. Crawford

Australian Nuclear Science and Technology Organisation, Institute for Environmental Research, AU
X close

Abstract

Two-point radon gradients provide a direct, unambiguous measure of near-surface atmospheric mixing. A 31-month data set of hourly radon measurements at 2 and 50 m is used to characterize the seasonality and diurnal variability of radon concentrations and gradients at a site near Sydney. Vertical differencing allows separation of remote (fetchrelated) effects on measured radon concentrations from those due to diurnal variations in the strength and extent of vertical mixing. Diurnal composites, grouped according to the maximum nocturnal radon gradient (ΔCmax), reveal strong connections between radon, wind, temperature and mixing depth on subdiurnal timescales. Comparison of the bulk Richardson Number (RiB) and the turbulence kinetic energy (TKE) with the radon-derived bulk diffusivity (KB) helps to elucidate the relationship between thermal stability, turbulence intensity and the resultant mixing. On nights with large ΔCmax, KB and TKE levels are low and RiB is well above the ‘critical’ value. Conversely, when Cmax is small, KB and TKE levels are high and RiB is near zero. For intermediate Cmax, however, RiB remains small whereas TKE and KB both indicate significantly reduced mixing. The relationship between stability and turbulence is therefore non-linear, with even mildly stable conditions being sufficient to suppress mixing.

How to Cite: Chambers, S., Williams, A.G., Zahorowski, W., Griffiths, A. and Crawford, J., 2011. Separating remote fetch and local mixing influences on vertical radon measurements in the lower atmosphere. Tellus B: Chemical and Physical Meteorology, 63(5), pp.843–859. DOI: http://doi.org/10.1111/j.1600-0889.2011.00565.x
  Published on 01 Jan 2011
 Accepted on 3 Jun 2011            Submitted on 2 Mar 2011

References

  1. Allegrini , I. , Febo , A. , Pasini , A. and Schiarini , S . 1994 . Monitoring of the nocturnal mixed layer by means of particulate radon progeny measurement . J. Geophys. Res . 99 , 18 765-18 777 .  

  2. Banta , R. M. , Mahrt , L. , Vickers , D. , Sun , J. , Balsley , B. B. and co-authors . 2007 . The very stable boundary layer on nights with weak low-level jets. J. Atmos. Sci . 64 , 3068 - 3090 .  

  3. Beck , H. L. and Gogolak , C. V . 1979 . Time-dependent calculations of the vertical distribution of 222Rn and its decay products in the atmosphere . J. Geophys. Res . 84 , 3139 – 3148 .  

  4. Butterweck , G. , Reinelcing , A. , Kesten , J. and Porstendorfer , J . 1994 . The use of the natural radioactive noble gases radon and thoron as tracers for the study of turbulent exchange in the atmospheric boundary layer: case study in and above a wheat field . Atmos. Environ . 28 , 1963 – 1969 .  

  5. Clements , W. E. and Wilkening , M. H . 1974 . Atmospheric pressure effects on 222Ril transport across the earth-air interface . J. Geophys. Res . 79 , 2654 – 2668 .  

  6. Cohen , L. D. , Barr , S. , Krablin , R. and Newstein , H . 1972 . Steady-state vertical turbulent diffusion of radon . J. Geophys. Res . 77 , 2654 – 2668 .  

  7. Draxler , R. R. and Hess , G. D . 1998 . An overview of the HYSPLIT-4 modelling system for trajectories, dispersion and deposition . AusL MeteoroL Mag . 47 , 295 – 308 .  

  8. Druilhet , A. , Guedalia , D. and Fontan , J . 1980 . Use of natural radioactive tracers for the determination of vertical exchanges in the planetary boundary layer. In: Natural Radiation Environment III . Volume 1 (eds. Thomas E Gesell and Wayne M. Lowder ). U. S. Department of Energy DOE Symposium series 51 , 226 – 241 .  

  9. Dueñas , C. , Perez , M. , Fernandez , M. C. and Carretero , J . 1996 . Radon concentrations in surface air and vertical atmospheric stability of the lower atmosphere . J. Environ. Radioact . 31 , 87 – 102 .  

  10. Fernando , H. J. S. and Weil , J. C . 2010 . Whither the stable boundary layer? A shift in the Research Agenda . Bull. Am. MeteoroL Soc . 91 , 1475 – 1484 .  

  11. Fontan , J. , Birot , A. , Blanc , D. , Bouville , A. and Druilhet , A . 1966 . Measurement of the diffusion of radon, thoron and their radioactive daughter products in the lower layers of the Earth's atmosphere . Tellus 18 , 623 – 632 .  

  12. Gogolak , C. V. and Beck , H. L . 1980 . Diurnal variations of radon daugh-ter concentrations in the lower atmosphere. In: Natural Radiation Environment III . Volume 1 (eds. Thomas F. Gesell and Wayne M. Lowder ). U. S. Department of Energy DOE Symposium series 51 , 259 – 280 .  

  13. Gras , L. L. and Whittlestone , S . 1992 . Radon and CN: complementary tracers of polluted air masses at coastal and island sites . J. RadioanaL NucL Chem . 161 ( 1 ), 293 – 306 .  

  14. Griffiths , A. D. , Zahorowski , W. , Element , A. and Werczynski , S . 2010 . A map of radon flux at the Australian land surface . Atmos. Chem. Phys . 10 , 8969 – 8982 , doi: https://doi.org/10.5194/acp-10-8969-2010 .  

  15. Guedalia , D. , N' Tsila , A. , Druilhet , A. and Fontan , J . 1980 . Monitoring of the atmospheric stability above an urban and suburban site using sodar and radon measurements . J. Appl. Meteorol . 19 , 839 – 848 .  

  16. Holtslag , A. A. M. and Boville , B. A . 1993 . Local versus nonlo-cal boundary-layer diffusion in a global climate model . J. Clim . 6 , 1825 – 1842 .  

  17. Hosler , C. R . 1968 . Urban-rural climatology of atmospheric radon con-centrations . J. Geophys. Res . 73 , 1155 – 1166 .  

  18. Hosler , C. R . 1969 . Vertical diffusivity from radon profiles . J. Geophys. Res . 74 , 7018 – 7026 .  

  19. Hsu , S. A. , Larson , R. E. and Bressan , D. J . 1980 . Diurnal variations of radon and mixing heights along a coast: a case study (Gulf Coast) . J. Geophys. Res . 85 , 4107 – 4110 .  

  20. Israel , H . 1951 . Radioactivity of the atmosphere. In: Compendium of Meteorology (ed. T. F. Malone ). Am. Meteorol. Soc., Washington, DC, 155 - 161 .  

  21. Israel , H. , Hobert , M. and Israel , G. W . 1966 . Results of continuous mea-surements of radon and its decay products in the lower atmosphere . Tellus 18 , 638 – 641 .  

  22. Israelsson , S . 1978 . Meteorological influences on atmospheric radioac-tivity and its effects on the electrical environment. In: Natural Radi-ation Environment III . Volume 1 (eds. Thomas E Gesell and Wayne M. Lowder ). U. S. Department of Energy DOE Symposium series ; 51 , 210 – 225 .  

  23. Jacobi , W. and Andre , K . 1963 . The vertical distribution of Rn-222, Rn-220 and their decay products in the atmosphere . J. Geophys. Res . 68 , 3799 – 3814 .  

  24. Kataolca , T. , Yunolci , E. , Shimizu , M. , Mori , T. , Tsukamoto , O. and co-authors . 2003 . Concentrations of 222Ril, its short-lived daughters and 212Pb and their ratios under complex atmospheric conditions and topography. Bound.-Layer Meteorol . 107 , 219 - 249 .  

  25. Kumar , A. V , Sitaraman , V. , Oza , R. B. and Krishnamoorthy , T. M . 1999 . Application of a numerical model for the planetary boundary layer to the vertical distribution of radon and its daughter products . Atmos. Environ . 33 , 4717 – 4726 .  

  26. Lambert , G. , Polian , G. , Sanak , J. , Ardouin , B. , Buisson , A. and co-authors . 1982 . Cycle du radon et de ses descentants: application a P etude des echanges troposphere-stratosphere. Ann. Geophys . 38 , 497 - 531 .  

  27. Leach , V. A. and Chandler , W. P . 1992 . Atmospheric dispersion of radon gas and its decay products under stable conditions in arid regions of Australia . Environ. Monit. Assess . 20 , 1 – 17 .  

  28. Li , T.-Y . 1974 . Diurnal variations of radon and meteorological variables near the ground . Bound.-Layer Meteorol . 7 , 185 – 198 .  

  29. Mahrt , L . 1999 . Stratified atmospheric boundary layers . Bound.-Layer Meteorol . 90 , 375 – 396 .  

  30. Mahrt , L. and Vickers , D . 2006 . Extremely weak mixing in stable con-ditions . Bound.-Layer Meteorol . 119 , 19 – 39 .  

  31. Malalchov , S. G. , Balculin , V. N. , Dmitrieva , G. V. , Kirichenlco , L. V. , Sisigina , T. L. and co-authors . 1966 . Diurnal variations of radon and thoron decay product concentrations in the surface layer of the atmo-sphere and their washout by precipitations. Tellus 18 , 643 - 654 .  

  32. Martens , C. S. , Shay , T. J. , Mendlovitz , H. P. , Matross , D. M. , Saleska , S. R. and co-authors . 2004 . Radon fluxes in tropical forest ecosystems of Brazilian Amazonia: night-time CO2 net ecosystem exchange de-rived from radon and eddy covariance methods. Glob. Change Biol . 10 , 618 - 629 .  

  33. Moses , H. , Stehney , A. F. and Lucas , H. E J . 1960 . The effect of me-teorological variables upon the vertical and temporal distributions of atmospheric radon . J. Geophys. Res . 65 , 1223 – 1238 .  

  34. Nagaraja , K. , Prasad , B. S. N. , Madhava , M. S. , Chandrashekara , M. S. , Paramesh , L. and co-authors . 2003 . Radon and its short-lived progeny: variations near the ground. Radiat. Meas . 36 , 413 - 417 .  

  35. Newstein , H. , Cohen , L. D. and Krablin , R . 1971 . An automated atmo-spheric radon sampling system . Atmos. Environ . 5 , 175 – 181 .  

  36. Pearson , J.E. and Moses , H . 1966 . Atmospheric radon-222 concentration variation with height and time . J. AppL Meteorol . 5 , 175 – 181 .  

  37. Perrino , C. , Catrambone , M. and Pietrodangelo , A . 2008 . Influence of atmospheric stability on the mass concentration and chemical compo-sition of atmospheric particles: a case study in Rome, Italy . Environ. Int . 34 , 621 – 628 .  

  38. Porstendorfer , J. , Butterweck , G. and Reinelcing , A . 1991 . Diurnal vari-ation of the concentrations of radon and its short-lived daughters in the atmosphere near the ground . Atmos. Environ . 25A , 709 – 713 .  

  39. Pun , K. , Dietachmayer , G. S. , Mills , G. A. , Davidson , N. E. , Bowen , R. A. and co-authors . 1998 . The new BMRC Limited Area Prediction System, LAPS. AusL MeteoroL Mag . 47 , 203 - 223 .  

  40. Schery , S. D. , Gaeddert , D. H. and Wilkening , M. H . 1984 . Factors affecting exhalation of radon from a gravelly sandy loam . J. Geophys. Res . 89 , 7299 – 7309 .  

  41. Servant , J . 1966 . Temporal and spatial variations of the concentration of the short-lived decay products of radon in the lower atmosphere . Tellus 18 , 663 – 670 .  

  42. Sisigina , T. L . 1964 . Vertical distribution of radon in the boundary layer of the atmosphere (0-300m) in connection with changing meteorolog-ical conditions . lzvest. Akad. Nauk. S. S. S. R. Ser Geofiz . 3 , 414 – 421 .  

  43. Sorbjan , Z . 2006 . Local structure of turbulence in stably stratified bound-ary layers. J. Atmos. Sci . 63 , 1526 – 1537 .  

  44. Thomas , J. W. and Leclare , P. C . 1970 . A study of the two-filter method for radon-222 . Health Phys . 18 , 113 – 122 .  

  45. Trumbore , S. E. , Keller , M. , Wofsy , S. C. and Da Costa , J. M . 1990 . Measurements of soil and canopy exchange rates in the Amazon rain forest using 222Ril . J. Geophys. Res . 95 , 16 865-16 873 .  

  46. Turelcian , K. K. , Nozalci , Y. and Benninger , L. K . 1977 . Geochemistry of atmospheric radon and radon products. Ann . Rev. Earth Planet. Sci . 5 , 227 – 255 .  

  47. Ussler , W. I. , Chanton , J. P. , Kelley , C. A. and Martens , C. S . 1994 . Radon 222 tracing of soil and forest canopy trace gas exchange in an open canopy boreal forest . J. Geophys. Res . 99 , 1953 – 1963 .  

  48. Vesala , T. , Kljun , N. , Rannilc , U. , Rinne , J. , Sogachev , A. and co-authors . 2008 . Flux and concentration footprint modelling. State of the Art Environmental Pollution 152 , 653 - 666 .  

  49. Wigand , A. and Wenlc , F . 1928 . Der gehalt der luft an radium-emanation, nach messungen bei flugzeugaufstiegen . Ann. Lpz. Phys. (Annalen der Physik) 86 , 657 – 686 .  

  50. Wilkening , M. H. and Clements , W. E . 1975 . Radon-222 from the ocean surface . J. Geophys. Res . 80 , 3829 – 3830 .  

  51. Williams , A. G. , Chambers , S. D. , Zahorowski , W. , Crawford , J. , Mat-sumoto , K. and co-authors . 2009 . Estimating the Asian radon flux density and its latitudinal gradient in winter using ground-based radon observations at Sado Island. Tellus 61B , 732 - 746 .  

  52. Williams , A. G. , Zahorowski , W. , Chambers , S. D. and Griffiths , A . 2011 . The vertical distribution of radon in clear and cloudy daytime terrestrial boundary layers. J. Atmos. Sci . 68 , 155 – 174 .  

  53. Zahorowski , W. and Whittlestone , S . 1996 . A fast portable emanometer for field measurement of radon and thoron flux . Radiat. Prot. Dosim . 67 , 109 – 120 .  

  54. Zahorowski , W. , Chambers , S. , Wang , T. , Kang , C.-H. , Uno , I. and co-authors . 2005 . Radon-222 in boundary layer and free tropo-spheric continental outflow events at three ACE-Asia sites. Tellus 57 , 124 - 140 .  

comments powered by Disqus