Start Submission Become a Reviewer

Reading: Thermal IR radiative properties of mixed mineral dust and biomass aerosol during SAMUM-2

Download

A- A+
Alt. Display

Original Research Papers

Thermal IR radiative properties of mixed mineral dust and biomass aerosol during SAMUM-2

Authors:

Claas H. Köhler ,

Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung, DE
X close

Thomas Trautmann,

Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung, DE
X close

Erwin Lindermeir,

Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Methodik der Fernerkundung, DE
X close

Willem Vreeling,

Netherlands Institute for Space Research (SRON), NL
X close

Kirsten Lieke,

Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, DE
X close

Konrad Kandler,

Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, DE
X close

Bernadett Weinzierl,

Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, DE
X close

Silke Groß,

Ludwig-Maximilians-Universität München, Meteorologisches Institut, DE
X close

Matthias Tesche,

Leibniz-Institut für Troposphärenforschung (IfT), DE
X close

Manfred Wendisch

Universität Leipzig, Leipziger Institut für Meteorologie, DE
X close

Abstract

Ground-based high spectral resolution measurements of downwelling radiances from 800 to 1200 cm−1 were conducted between 20 January and 6 February 2008 within the scope of the SAMUM-2 field experiment. We infer the spectral signature of mixed biomass burning/mineral dust aerosols at the surface from these measurements and at top of the atmosphere from IASI observations. In a case study for a day characterized by the presence of high loads of both dust and biomass we attempt a closure with radiative transfer simulations assuming spherical particles. A detailed sensitivity analysis is performed to investigate the effect of uncertainties in the measurements ingested into the simulation on the simulated radiances. Distinct deviations between modelled and observed radiances are limited to a spectral region characterized by resonance bands in the refractive index. A comparison with results obtained during recent laboratory studies and field experiments reveals, that the deviations could be caused by the aerosol particles’ non-sphericity, although an unequivocal discrimination from measurement uncertainties is not possible. Based on radiative transfer simulations we estimate the aerosol’s direct radiative effect in the atmospheric window region to be 8 W m−2 at the surface and 1 W m−2 at top of the atmosphere.

How to Cite: Köhler, C.H., Trautmann, T., Lindermeir, E., Vreeling, W., Lieke, K., Kandler, K., Weinzierl, B., Groß, S., Tesche, M. and Wendisch, M., 2011. Thermal IR radiative properties of mixed mineral dust and biomass aerosol during SAMUM-2. Tellus B: Chemical and Physical Meteorology, 63(4), pp.751–769. DOI: http://doi.org/10.1111/j.1600-0889.2011.00563.x
  Published on 01 Jan 2011
 Accepted on 5 May 2011            Submitted on 20 Dec 2010

References

  1. Ansmann , A. , Petzold , A. , Kandler , K. , Tegen , I. , Wendisch , M. and co-authors . 2011 . Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned? Tellus 63B, this issue.  

  2. Aronson , J. R . 1986 . Optical constants of monoclinic anisotropic crys-tals: orthoclase . Spectrochimica Acta 42A ( 2/3 ), 187 – 190 .  

  3. Aronson , J. R. and Strong , P. F . 1975 . Optical constants of minerals and rocks . Appl. Opt . 14 ( 12 ), 2914 – 2920 .  

  4. Bertie , J. E. and Lan , Z . 1996 . Infrared intensities of liquids XX: the intensity of the OH stretching band of liquid water revisited, and the best current values of the optical constants of H20(1) at 25 °C between 15,000 and 1 cm-1 . Appl. Spectrosc . 50 ( 8 ), 1047 – 1057 .  

  5. Bharmal , N. A. , Slingo , A. , Robinson , G. J. and Settle , J. J . 2009 . Simu-lation of surface and top of atmosphere thermal fluxes and radiances from the radiative atmospheric divergence using the ARM mobile fa-cility, GERB data, and AMMA stations experiment. J. Geophys. Res . 114 , DOOE07 . doi: https://doi.org/10.1029/2008JD010504 .  

  6. Cady-Pereira , K. E. , Shephard , M. W. , Turner , D. D. , Mlawer , E. J. , Clough , S. A. and co-authors . 2008 . Improved daytime column-integrated precipitable water vapor from Vaisala Radiosonde Humid-ity Sensors. jaot 25 , 873 - 883 .  

  7. Clough , S. , Shephard , M. , Mlawer , E. , Delamere , J. , Iacono , M. and co-authors . 2005 . Atmospheric radiative transfer modeling: a summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer 91 ( 2 ), 233 - 244 . doi: https://doi.org/10.1016/j.jqsrt.2004.05.058 .  

  8. Fiedler , L. , Newman , S. and Balcan , S . 2005 . Correction of detector nonlinearity in Fourier transform spectroscopy with a low-temperature blackbody . Appl. Opt . 44 ( 25 ), 5332 – 5340 .  

  9. Friedman , D . 1969 . Infrared characteristics of ocean water (1.5-15 µm) . Appl. Opt . 8 , 2073 – 2078 .  

  10. Glotch , T. D. , Christensen , P. R. and Sharp , T. G . 2006 . Fresnel model-ing of hematite crystal surfaces and application to martian hematite spherules . Icarus 181 , 408 – 418 .  

  11. Glotch , T. D. , Rossman , G. R. and Aharonson , O . 2007 . Mid IR re-flectance spectra and optical constants of ten phyllosilicate minerals . Icarus 192 , 605 – 622 .  

  12. Groß , S. , Gasteiger , J. , Freudenthaler , V , Wiegner , M ., Greif3, A. and co-authors . 2011 . Characterization of the planetary boundary layer during SAMUM-2 by means of lidar measurements. Tellus 63B, this issue.  

  13. Hansell , R. A. , Liou , K. N. , Ou , S. C. , Tsay , S. C. , Ji , Q. and co-authors . 2008 . Remote sensing of mineral dust aerosol using AERI during the UAE2: a modeling and sensitivity study. J. Geophys. Res . 113 , 18202-+ . doi: https://doi.org/10.1029/2008JD010246 .  

  14. Hansell , R. A. , Tsay , S. C. , Ji , Q. , Hsu , N. C. , Jeong , M. J. and co-authors . 2010 . An assessment of the surface longwave direct radiative effect of airborne saharan dust during the NAMMA field campaign. J. Atmos. Sci . 67 ( 4 ), 1048 - 1065 . doi: https://doi.org/10.1175/2009JAS3257.1 .  

  15. Henning , T. and Mutschke , H . 1997 . Low-temperature IR properties of cosmic dust analogues . Astron. Astrophys . 327 , 743 – 754 .  

  16. Henyey , L. G. and Greenstein , J. L . 1940 . Diffuse radiation in the Galaxy . Annales d'Astrophysique 3 , 117 – 137 .  

  17. Hess , M. , Koepke , P. and Schuh , I . 1998 . Optical properties of aerosols and clouds: the software package OPAC . Bull. Am. Met. Soc . 79 , 831 – 844 .  

  18. Highwood , E. J. , Haywood , J. M. , Silverstone , M. D. , Newman , S. M. and Taylor , J. P . 2003 . Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE): 2. Terrestrial spectrum . J. Geophys. Res . 108 ( D18 ), 8578 . doi: https://doi.org/10.1029/2002JD002552 .  

  19. Hoidale , G. B. and Blanco , A. J . 1969 . Infrared absorption spectra of atmospheric dust over an interior desert basin. Pure Appl. Geophys . 74 ( 1 ), 151 - 164 . https://doi.org/10.1007/13F00875195 . doi: https://doi.org/10.1007/BF00875195 .  

  20. Hollweg , H. , Balcan , S. and Taylor , J. P . 2006 . Is the aerosol emission detectable in the thermal infrared? J. Geophys. Res . 111 , D15202 . doi: https://doi.org/10.1029/2005JD006432 .  

  21. Hudson , P. K. , Gibson , E. R. , Young , M. A. , Kleiber , P. D. and Gras-sian , V. H . 2008 . Coupled infrared extinction and size distribution measurements for several clay components of mineral dust aerosol . J. Geophys. Res . 113 , D01201 . doi: https://doi.org/10.1029/2007JD008791 .  

  22. Kandler , K. , Lieke , K. , Benker , N. , Emmel , C. , Kuepper , M. and co-authors . 2011a . Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral dust experiment: particle chemistry, shape, mixing state and complex refractive index. Tellus 63B, this issue.  

  23. Kandler , K. , Schiitz , L. , Jaeckel , S. , Lieke , K. , Emmel , C. and co-authors . 2011b . Ground-based off-line aerosol measurements at Praia, Cape Verde, during the Saharan Mineral Dust Experiment: microphysical properties and mineralogy. Tellus 63B, this issue.  

  24. Kleinert , A. , Aubertin , G. , Perron , G. , Birk , M. , Wagner , G. and co-authors . 2007 . MIPAS Level 1B algorithms overview: operational processing and characterization . Atmos. Chem. Phys . 7 ( 5 ), 1395 - 1406 .  

  25. Knippertz , P. , Tesche , M. , Heinold , B. , Kandler , K. , Toledano , C. and co-authors . 2011 . Dust mobilization and aerosol transport from West-ern Africa to Cape Verde: a meteorological overview of SAMUM-2. Tellus 63B, this issue.  

  26. Knuteson , R. O. , Revercomb , H. E. , Best , F. A. , Ciganovich , N. C. , Dedecker , R. G. and co-authors . 2004a . Atmospheric emitted radiance interferometer, part I: instrument design. J. Atmos. Ocean. TechnoL 21 ( 12 ), 1763 - 1776 . doi: https://doi.org/10.1175/JTECH-1662.1 .  

  27. Knuteson , R. O. , Revercomb , H. E. , Best , F. A. , Ciganovich , N. C. , Dedecker , R. G. and co-authors . 2004b . Atmospheric emitted radi-ance interferometer, part instrument performance. J. Atmos. Ocean. TechnoL 21 ( 12 ), 1777 - 1789 . doi: https://doi.org/10.1175/JTECH-1663.1 .  

  28. Koehler , C. H. , Trautmann , T. and Lindermeir , E . 2009 . Measure-ment of mixed biomass burning and mineral dust aerosol in the thermal infrared . AIP Conference Proceedings 1100 ( 1 ), 169 – 172 . doi: https://doi.org/10.1063/1.3116940 .  

  29. Korb , A. R. , Dybward , P. , Wadsworth , W. and Salisbury , J . 1996 . Portable Fourier transform infrared spectroradiometer for field measurements of radiance and emissivity . Appl. Opt . 35 ( 10 ), 1679 – 1692 .  

  30. Kuntz , M. and Hoepfner , M . 1999 . Efficient line-by-line calculation of absorption coefficients . J. Quant. Spectrosc. Radiat. Transfer 63 ( 1 ), 97 – 114 . doi: https://doi.org/10.1016/50022-4073(98)00140-X .  

  31. Lieke , K. , Kandler , K. , Scheuvens , D. , Emmel , C. , von Glahn , C. and co-authors . 2011 . Particle chemical properties in the vertical column based on aircraft observations in the vicinity of Cape Verde Islands. Tellus 63B, this issue.  

  32. Lindermeir , E. , Haschberger , P. , Tank , V. and Dietl , H . 1992 . Calibration of a Fourier transform spectrometer using three blackbody sources . Appl. Opt . 31 ( 22 ), 4527 – 4533 . doi: https://doi.org/10.1364/A0.31.004527 .  

  33. Long , L. L. , Querry , M. R. , Bell , R. J. and Alexander , R. W . 1993 . Optical properties of calcite and gypsum in crystallinte and powdered form in TTR and FIR . Infrared Phys . 34 ( 2 ), 191 – 201 .  

  34. Loyola , D. , Koukouli , M. , Valks , P. , Balis , D. , Hao , N. and co-authors . 2011 . The GOME-2 total column ozone product: retrieval algo-rithm and ground-based validation. J. Geophys. Res . 116 , D07302 , doi: https://doi.org/10.1029/2010JDO14691 , in press .  

  35. Maxwell-Garnett , J. C . 1903 . Colours in metal glasses and in metallic films . Philos. Trans. R. Soc. A} 203 , 385 – 420 .  

  36. Mayer , B. and Kylling , A . 2005 . Technical note: the libRadtran software package for radiative transfer calculations, description and exam-ples of use. Atmos. Chem. Phys. 5(7 , 1855 - 1877 . doi: https://doi.org/10.5194/acp-5-1855-2005 .  

  37. Minnett , P. J. , Knuteson , R. O. , Best , E A. , Osborne , B. J. , Hanafin , J. A. and co-authors . 2001 . The marine-atmospheric emitted radiance interferometer: a high-accuracy, seagoing infrared spectroradiome-ter. J. Atmos. Ocean. TechnoL 18 ( 6 ), 994 - 1013 . doi: https://doi.org/10.1175/1520-0426(2001)0180994:tmaeri2.0.00;2 .  

  38. Mogili , P. K. , Yang , K. H. , Young , M. A. , Kleiber , P. D. and Grassian , V. H . 2008 . Extinction spectra of mineral dust aerosol components in an environmental aerosol chamber: IR resonance studies . Atmos. Environ . 42 , 1752 – 1761 .  

  39. Mooney , T. and Knacke , R. F . 1985 . Optical constants of chlorite and serpentine between 2.5 and 50 gm . Icarus 64 , 493 – 502 .  

  40. Mutschke , H. , Begemann , B. , Dorschner , J. , Guertler , J. , Gustafson , B. and co-authors . 1998 . Steps toward interstellar silicate mineralogy, DI: the role of aluminium in circumstellar amorphous silicates. Astron. Astrophys . 333 , 188 - 198 .  

  41. Nousiainen , T . 2009 . Optical modeling of mineral dust particles: a re-view. J. Quant. Spectrosc. Radiat. Transfer 110(14-16), 1261 - 1279 . XI Conference on Electromagnetic and Light Scattering by Non-Spherical Particles: 2008. doi: https://doi.org/10.1016/j.jqsrt.2009.03.002 .  

  42. Oreopoulos , L. and Mlawer , E . 2010 . The continual intercomparison of radiation codes (CIRC) . Bull. Am. Met. Soc . 93 ( 3 ), 305 – 310 .  

  43. Otto , S. , Bierwirth , E. , Weinzierl , B. , Kandler , K. , Esselborn , M. and co-authors . 2009 . Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles. Tellus 61B , 270 - 296 . doi: https://doi.org/10.1111/j.1600-0889.2008.00389.x .  

  44. Querry , M. R. , Osborne , G. , Lies , K. , Jordon , R. and Coveney , R. M . 1978 . Complex refractive index of limestone in the visible and in-frared . Appl. Opt . 17 ( 3 ), 353 – 356 .  

  45. Revercomb , H. E. , Buijs , H. , Howell , H. B. , LaPorte , D. D. , Smith , W. L. and co-authors . 1988 . Radiometric calibration of IR fourier trans-form spectrometers: solution to a problem with the high-resolution interferometer sounder . Appl. Opt . 27 ( 15 ), 3210 - 3218 .  

  46. Rother , T. , ed. 2009 . Electromagnetic Wave Scattering on Nonspheri-cal Particles: Basic Methodology and Simulations . Springer-Verlag GmbH, Heidelberg. ISBN 9783642007033.  

  47. Rothman , L. , Gordon , I. , Barbe , A. , Benner , D. , Bernath , P. and co-authors . 2009 . The hitran 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 110(9-10), 533 - 572 . doi: https://doi.org/10.1016/jjqsrt.2009.02.013 .  

  48. Schmidt , K. , Wauer , J. , Rother , T. and Trautmann , T . 2009 . Scattering database for spheroidal particles . Appl. Opt . 48 ( 11 ), 2154 – 2164 .  

  49. Shettle , E. P. and Fenn , R. W . 1979 . Models for the Aerosols of the lower atmosphere and the effects of humidity variations on their optical properties, technical report AFGL-TR-79-0214, AFGL.  

  50. Sokolilc , I . 2002 . The spectral radiative signature of wind-blown min-eral dust: implications for remote sensing in the thermal IR region . Geophys. Res. Lett . 29 ( 24 ), 2154 . doi: https://doi.org/10.1029/2002GL015910 .  

  51. Sokolilc , I. , Toon , O. B. and Bergstrom , R. W . 1998 . Modeling the ra-diative characteristics of airborne mineral aerosols at infrared wave-lenghts . J. Geophys. Res . 103 , 8813 – 8826 . doi: https://doi.org/10.1029/98JD00049 .  

  52. Stamnes , K. , Tsay , S. , Jayaweera , K. and Wiscombe , W . 1988 . Numeri-cally stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media . Appl. Opt . 27 , 2502 – 2509 .  

  53. Sutherland , R. A. and Khanna , R. K . 1991 . Optical properties of organic-based aerosols produced by burning vegetation . Aerosol. Sci. TechnoL 14 , 331 – 342 .  

  54. Tesche , M. , Gross , S. , Ansmann , A. , Muller , D. , Althausen , D. and co-authors . 2011 . Profiling of Saharan dust and biomass burning smoke with multiwavelength polarization Raman lidar at Cape Verde. Tellus 63B, this issue.  

  55. Thomas , M. and Gautier , C . 2009 . Investigations of the March 2006 African dust storm using ground-based column-integrated high spec-tral resolution infrared (8-13 µ,m) and visible aerosol optical thickness measurements: 2. Mineral aerosol mixture analyses . J. Geophys. Res . 114 , D14209 . doi: https://doi.org/10.1029/2008JDO10931 .  

  56. Toledano , C. , Wiegner , M ., Grofs , S. , Freudenthaler , V. , Gasteiger , J. and co-authors . 2011 . Optical properties of aerosol mixtures derived from sun-sky radiometry during SAMUM-2. Tellus 63B, this issue.  

  57. Toon , O. B. , Pollock , J. B. and Khare , B. N . 1976 . The optical con-stants of several atmospheric aerosols species: ammonium sulfate, aluminum oxide and sodium chloride . J. Geophys. Res . 81 , 5733 – 5748 .  

  58. Turner , D. D . 2008 . Ground-based infrared retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel. J. Geophys. Res . 113 , DOOE03 . doi: https://doi.org/10.1029/2008JD010054 .  

  59. Volz , FE . 1973 . Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice, and flyash . AppL Opt . 12 , 564 – 568 .  

  60. Vomel , H. , Sellcirk , H. , Miloshevich , L. , Valverde-Canossa , J. , Valdes , J. and co-authors . 2007 . Radiation dry bias of the Vaisala RS92 humidity sensor. J. Atmos. Ocean. Technol . 24 , 953 - 963 .  

  61. Weinzierl , B. , Sauer , D. , Esselborn , M. , Petzold , A. , Veira , A. and co-authors . 2011 . Microphysical and optical properties of dust and tropical biomass burning aerosol layers in the Cape Verde region: an overview of the airborne in-situ and lidar measurements during SAMUM-2. Tellus 63B, this issue.  

  62. Wiscombe , W. J . 1980 . Improved Mie scattering algorithms . Appl. Opt . 19 ( 9 ), 1505 – 1509 .  

comments powered by Disqus