Start Submission Become a Reviewer

Reading: Solar radiative transfer simulations in Saharan dust plumes: particle shapes and 3-D effect

Download

A- A+
Alt. Display

Original Research Papers

Solar radiative transfer simulations in Saharan dust plumes: particle shapes and 3-D effect

Authors:

Antje Torge ,

Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR); IFT, Leipzig, DE
X close

Andreas Macke,

IFT, Leipzig, DE
X close

Bernd Heinold,

IFT, Leipzig, DE
X close

Jochen Wauer

University of Leipzig, Institute for Meteorology, DE
X close

Abstract

Radiative fields of three-dimensional inhomogeneous Saharan dust clouds have been calculated at solar wavelength (0.6μm) by means of a Monte Carlo radiative transfer model. Scattering properties are taken from measurements in the SAMUM campaigns, from light scattering calculations for spheroids based on the MIESCHKA code, from Mie theory for spheres and from the geometric optics method assuming irregular shaped particles. Optical properties of different projected area equivalent shapes are compared. Large differences in optical properties are found especially in the phase functions.

Results of radiative transfer calculations based on the Monte Carlo method are shown exemplarily for one dust cloud simulated by the cloud resolving atmospheric circulation model LM-MUSCAT-DES. Shape-induced differences in the radiation fluxes are pronounced, for example, the domain averaged normalized radiance is about 30% lower in the case of a dust plume consisting of spheroids or irregular particles compared to spheres. The effect of net horizontal photon transport (3-D effect) on the reflected radiance fields is only notable at the largest gradients in optical thickness. For example, the reflectance at low sun position differs locally about 15% when horizontal photon transport is accounted for. ‘Sharp edges’ due to 1-D calculations are smoothed out in the 3-D case.

How to Cite: Torge, A., Macke, A., Heinold, B. and Wauer, J., 2011. Solar radiative transfer simulations in Saharan dust plumes: particle shapes and 3-D effect. Tellus B: Chemical and Physical Meteorology, 63(4), pp.770–780. DOI: http://doi.org/10.1111/j.1600-0889.2011.00560.x
  Published on 01 Jan 2011
 Accepted on 31 May 2011            Submitted on 2 Nov 2010

References

  1. Ansmann , A. , Petzold , A. , Kandler , K. , Tegen , I. , Wendisch , M. and co-authors . 2011 . Saharan Mineral Dust Experiments SA-MUM 1 and SAMUM 2: what have we learned? Tellus 63B, this issue.  

  2. Benner , T. C. and Evans , K. F . 2001 . Three-dimensional solar radiative transfer in small tropical cumulus fields derived from high-resolution imagery . J. Geophys. Res . 106 , 14 975-14 984 .  

  3. Bristow , C. S. , Drake , N. and Armitage , S . 2009 . Deflation in the dustiest place on Earth: The Bodele Depression, Chad. In: Geomorphology, Contemporary research in aeolian geomorphology, 6th International Conference on Aeolian Research (ICAR VI 105 ( 1-2 ), University of Guelph , Ontario, Canada , pp. 50 - 58 .  

  4. Bristow , C. S. , Hudson-Edwards , K. A. and Chappell , A . 2010 . Fer-tilizing the Amazon and equatorial Atlantic with West African dust . Geophys. Res. Lett . 37 , 1 – 5 .  

  5. Cahalan , R. F. , Oreopoulos , L. , Marshalc , A. , Evans , K. , Davis , A. B. , and co-authors . 2005 . THE I3RC: bringing together the most advanced radiative transfer tools for cloudy atmospheres. Bull. Amer. Meteor Soc . 86 , 1275 - 1293 .  

  6. Davis , A. , Marshak , A. , Cahalan , R. F. and Wiscombe , W . 1997 . The Landsat scale break in stratocumulus as a three-dimensional radiative transfer effect: implications for cloud remote sensing. J. Atmos. Sci . 54 , 241 – 260 .  

  7. Di Giuseppe , F. and Tompkins , A. M . 2003 . Effect of spatial organisation on solar radiative transfer in three dimensional idealised stratocumulus cloud fields. J. Atmos. Sci . 60 , 1774 – 1794 .  

  8. Ernst , T. , Rother , T. , Schreier , F. , Wauer , J. and Balzer , W . 2003 . DLR's VirtualLab: Scientific Software Just a Mouse Click Away Comput. Sci. Eng . 5 ( 1 ), 70 - 79 , doi: https://doi.org/10.1109/MCISE.2003.1166555 .  

  9. Evan , A. T. , Dunion , J. , Foley , J. A. , Heidinger , A. K. and Velden , C. S . 2006 . New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks . Geophys. Res. Lett . 33 , 1 – 5 .  

  10. Fu , Q. , Thorsen , T. J. , Su , J. , Ge , J. and Huang , J . 2009 . Test of Mie-based single-scattering properties of non-spherical dust aerosols in radiative flux calculations . J. Quant. Spectroscopy & Radiative Transf 110 ( 14-16 ), 1640 – 1653 , doi: https://doi.org/10.1016/j.jqsrt.2009.03.01 .  

  11. Garrison , V. H. , Shinn , E. A. , Foreman , W. T. , Griffin , D. W ., Holmes, and co-authors . 2003 . African and Asian dust: from desert soils to coral reefs. BioScience 53 , 469 - 480 .  

  12. Griffin , D. W. , Garrison , V. H. , Kellogg , C. and Shinn , E. A . 2001 . African desert dust in the Caribbean atmosphere: microbiology and public health . Aerobiologia 17 , 203 – 213 .  

  13. Heinold , B. , Helmert , J. , Hellmuth , O. , Wolke , R. , Ansmann , A. and co-authors . 2007 . Regional Modeling of Saharan Dust Events using LM-MUSCAT: model description and case studies. J. Geophys. Res . 112 , 21 PP., D11204 , doi: https://doi.org/10.1029/2006JD007443 .  

  14. Heintzenberg , J . 2009 . The SAMUM-1 experiment over Southern Mo-rocco: overview and introduction . Tellus 61B , 2 – 11 .  

  15. Kalashnilcova , O. V. and Sokolilc , I. N . 2002 . Importance of shapes and compositions of wind-blown dust particles for remote sensing at solar wavelengths . Geophys. Res. Lett . 29 ( 10 ) 1 – 4 .  

  16. Kalashnikova , O. V. and Sokolilc , I. N . 2004 . Modeling the radiative properties of nonspherical soil-derived mineral aerosols . J. QuanL Spectroscopy &Radiative Transf 87 ( 2 ), 137 – 166 .  

  17. Kandler , K. , Schiitz , L. , Deutscher , C. , Ebert , M ., Hofmann and co-authors . 2009 . Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus 61B , 32 - 50 .  

  18. Kandler , K. , Lieke , K. , Benker , N. , Emmel , C. , Kiipper , M. and co-authors . 2011 . Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral dust experiment: particle chemistry, shape, mixing state and complex refractive index. Taus 63B, this issue.  

  19. Kaufman , Y. J. , Koren , I. , Remer , L. A. , Rosenfeld , D. and Rudich , Y . 2005 . The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. In: Proceedings of the National Academy of Sciences of the United States of America , 102 , no.32, 11,207 - 11,212 .  

  20. Macke , A . 1993 . Scattering of light by polyhedral ice crystals . AppL Opt . 32 , 2780 – 2788 .  

  21. Macke , A. , Mueller , J. and Raschke , E . 1996 . Single scattering properties of atmospheric ice crystals. J. Atmos. Sci . 53 , 2813 – 2825 .  

  22. Macke , A. , Mishchenko , M. -I. , Carlson , B.-E. and Muinonen , K. 1997. Scattering of light by large spherical, spheroidal, and circular cylin-drical scatterers: geometrical optics approximation versus T-matrix method. In: IRS 96: Current Problems in Atmospheric Radiation . (eds) Smith W-L , Stamnes K. A. Deepak Publ. , Hampton. , 822 - 825 .  

  23. Macke , A. , Mitchell , D. L. and Bremen , L. V . 1999 . Monte Carlo ra-diative transfer calculations for inhomogeneous mixed phase clouds . Phys. Chem. Earth, Part B: HydroL Oceans Atmos . 24 , 3 , 237 – 241 .  

  24. Marshalc , A. , Davis , A. ( Eds.), 2005. 3D radiative transfer in cloudy atmospheres. In: Series: Physics of Earth and Space Environments, XII , Springer, Berlin, 686 p., ISBN 978-3-540-23958-1.  

  25. Otto , S. , Bierwirth , E. , Weinzierl , B. , Kandler , K. , Esselborn , M. and co-authors . 2009 . Solar radiative effects of a Saharan dust plume observed during SAMUM assuming spheroidal model particles. Tellus 61B , 270 - 296 .  

  26. Scheirer , R. and Macke , A . 2003 . Cloud inhomogeneity and broadband solar fluxes . J. Geophys. Res . 108 ( 019 ), 1 – 8 .  

  27. Schlimme , I. , Macke , A. and Reichardt , J . 2005 . The impact of ice crystal shapes, size distributions, and spatial structures of sirrus clouds on solar radiative fluxes . J. Atmos. Sci . 62 ( 7 ), 2274 – 2283 .  

  28. Schepanslci , K. , Tegen , I. , Laurent , B. , Heinold , B. and Macke , A . 2007 . A new Saharan dust source activation frequency map derived from MSG-SEVIRI IR-channels . Geophys. Res. Lett . 34 , 1 – 5 .  

  29. Schmidt , K. , Wauer , J. , Rother , T. and Trautmann , T . 2009 . Scattering database for spheroidal particles . AppL Opt . 48 , 2154 – 2164 .  

  30. Tegen , I. and Lacis , A. A . 1996 . Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol . J. Geophys. Res . 101 ( 014 ), 19 237-19 244 .  

  31. Tegen , I. , Lacis , A. A. and Fung , I . 1996 . The influence on climate forcing of mineral aerosols from disturbed soils . Nature 380 , 419 – 422 .  

  32. Tegen , I. , Harrison , S. P. , Kohfeld , K. E. , Prentice , I. C. , Coe , M. and co-authors . 2002 . Impact of vegetation and preferential source areas on global dust aerosol: results from a model study. J. Geophys. Res . 107 , 1 - 21 .  

  33. Wald , A. E. , Kaufman , Y. J. , Tanr , D. and Gao , B.-C . 1998 . Daytime and nighttime detection of mineral dust over desert using infrared spectral contrast . J. Geophys. Res . 103 ( 024 ), 32 307-32 313 .  

  34. Wauer , J. , Schmidt , K. , Rother , T. , Ernst , T. and Hess , M . 2004 . Two software tools for plane wave scattering on nonspherical particles in the German Aerospace Center's virtual laboratory AppL Opt . 43 , 6371 – 6379 .  

  35. Yang , P. , Feng , Q. , Hong , G. , Kattawar , G.W. , Wiscombe , W . J. and co-authors . 2007 . Modeling of the scattering and radiative properties of nonspherical dust particles. J. Aerosol Sci . 38 , 995 - 1014 .  

comments powered by Disqus