Start Submission Become a Reviewer

Reading: Modelling lidar-relevant optical properties of complex mineral dust aerosols

Download

A- A+
Alt. Display

Original Research Papers

Modelling lidar-relevant optical properties of complex mineral dust aerosols

Authors:

Josef Gasteiger ,

Ludwig-Maximilians-Universität, Meteorologisches Institut, DE
X close

Matthias Wiegner,

Ludwig-Maximilians-Universität, Meteorologisches Institut, DE
X close

Silke Groß,

Ludwig-Maximilians-Universität, Meteorologisches Institut, DE
X close

Volker Freudenthaler,

Ludwig-Maximilians-Universität, Meteorologisches Institut, DE
X close

Carlos Toledano,

Ludwig-Maximilians-Universität, Meteorologisches Institut, DE; Group of Atmospheric Optics, Valladolid University, ES
X close

Matthias Tesche,

Leibniz-Institut für Troposphärenforschung, DE
X close

Konrad Kandler

Technische Universitiät Darmstadt, Institut für Angewandte Geowissenschaften, DE
X close

Abstract

We model lidar-relevant optical properties of mineral dust aerosols and compare the modelling results with optical properties derived from lidar measurements during the SAMUM field campaigns. The Discrete Dipole Approximation is used for optical modelling of single particles. For modelling of ensemble properties, the desert aerosol type of the OPAC aerosol dataset is extended by mixtures of absorbing and non-absorbing irregularly shaped mineral dust particles. Absorbing and non-absorbing particles are mixed to mimic the natural mineralogical inhomogeneity of dust particles. A sensitivity study reveals that the mineralogical inhomogeneity is critical for the lidar ratio at short wavelengths; it has to be considered for agreement with the observed wavelength dependence of the lidar ratio. The amount of particles with low aspect ratios (about 1.4 and lower) affects the lidar ratio at any lidar wavelength; their amount has to be low for agreement with SAMUM observations. Irregularly shaped dust particles with typical refractive indices, in general, have higher linear depolarization ratios than corresponding spheroids, and improve the agreement with the observations.

How to Cite: Gasteiger, J., Wiegner, M., Groß, S., Freudenthaler, V., Toledano, C., Tesche, M. and Kandler, K., 2011. Modelling lidar-relevant optical properties of complex mineral dust aerosols. Tellus B: Chemical and Physical Meteorology, 63(4), pp.725–741. DOI: http://doi.org/10.1111/j.1600-0889.2011.00559.x
6
Views
1
Downloads
  Published on 01 Jan 2011
 Accepted on 25 May 2011            Submitted on 23 Nov 2010

References

  1. Ansmann , A. , Petzold , A. , Kandler , K. , Tegen , I. , Wendisch , M. , and co-authors . 2011 . Saharan Mineral Dust Experiments SAMUM-1 and SAMUM-2: what have we learned? Tellus 63B, in press.  

  2. Bockmann , C. and Wauer , J . 2001 . Algorithms for the inversion of light scattering data from uniform and non-uniform particles . J. Aerosol Sci . 32 , 49 – 61 . doi: https://doi.org/10.1016/S0021-8502(00)00052-5 .  

  3. Dubovik , O. , Sinyuk , A. , Lapyonok , T. , Holben , B. N. , Mishchenko , M. , and co-authors . 2006 . Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res . 111 , D11208 . doi: https://doi.org/10.1029/2005JD006619 .  

  4. Esselborn , M. , Wirth , M. , Fix , A. , Weinzierl , B. , Rasp , K. , and co-authors . 2009 . Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar dur-ing SAMUM 2006. Tellus 61B , 131 - 143 . doi: https://doi.org/10.1111/j.1600-0889.2008.00394.x .  

  5. Freudenthaler , V. , Esselborn , M. , Wiegner , M. , Heese , B. , Tesche , M. , and co-authors . 2009 . Depolarization ratio profiling at several wave-lengths in pure Saharan dust during SAMUM 2006. Tellus 61B , 165 - 179 . doi: https://doi.org/10.1111/j.1600-0889.2008.00396.x .  

  6. Gardner , G. Y . 1984 . Simulation of natural scenes using textured quadric surfaces . In: Proceedings of the I I th Annual Conference on Com-puter Graphics and Interactive Techniques . ACM press , New York , pp. 11 – 20 .  

  7. Gasteiger , J ., Grofs , S. , Freudenthaler , V. and Wiegner , M. 2011. Volcanic ash from iceland over munich: mass concentration retrieved from ground-based remote sensing measurements. Atmos. Chem. Phys . 11 , 2209 - 2223 . doi: https://doi.org/10.5194/acp-11-2209-2011 .  

  8. Gimmestad , G. G . 2008 . Reexamination of depolarization in lidar mea-surements . AppL Opt . 47 , 3795 – 3802 . doi: https://doi.org/10.1364/A0.47.003795 .  

  9. Groß , S. , Tesche , M. , Freudenthaler , V. , Toledano , C. , Wiegner , M. , and co-authors . 2011 . Characterization of Saharan dust, marine aerosols and mixtures of biomass burning aerosols and dust by means of multi-wavelength depolarization- and Raman-measurements during SAMUM-2. Tellus 63B, in press.  

  10. Heintzenberg , J . 2009 . The SAMUM-1 experiment over South-ern Morocco: overview and introduction . Tellus 61B , 2 – 11 . doi: https://doi.org/10.1111/j.1600-0889.2008.00403.x .  

  11. Hess , M. , Koepke , P. and Schuh , I . 1998 . Optical Proper-ties of Aerosols and Clouds: The Software Package OPAC . Bull. Amer Meteor Soc . 79 , 831 – 844 . doi: https://doi.org/10.1175/1520-0477(1998)0790831:0p0aac2.0.00;2 .  

  12. van de Hulst, H. C. ( ed.) 1981. Light Scattering by Small Particles , H. C. Dover Publications, New York.  

  13. Ishimoto , H. , Zaizen , Y. , Uchiyama , A. , Masuda , K. and Mano , Y . 2010 . Shape modeling of mineral dust particles for light-scattering calculations using the spatial Poisson-Voronoi tessel-lation . J. QuanL Spectrosc. RadiaL Transfer 111 , 2434 – 2443 . doi: https://doi.org/10.1016/j.jqsrt.2010.06.018 .  

  14. Kalashnikova , O. V. and Sokolilc , I. N . 2004 . Modeling the radiative properties of nonspherical soil-derived mineral aerosols . J. QuanL Spectrosc. RadiaL Transfer 87 , 137 – 166 . doi: https://doi.org/10.1016/j.jqsrt.2003.12.026 .  

  15. Kandler , K. , Schiitz , L. , Deutscher , C. , Ebert , M. , Hofmann , H. , and co-authors . 2009 . Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus 61B , 32 - 50 . doi: https://doi.org/10.1111/j.1600-0889.2008.00385.x .  

  16. Kandler , K. , Lieke , K. , Benker , N. , Emmel , C. , Kiipper , M. , and co-authors . 2011 . Electron microscopy of particles collected at Praia, Cape Verde, during the Saharan Mineral dust experiment: particle chemistry, shape, mixing state and complex refractive index. Tellus 63B , doi: https://doi.org/10.1111/j.1600-0889.2011.00550.x .  

  17. Koepke , P. , Hess , M. , Schult , I. and Shettle , E . 1997 . Global Aerosol Data Set , report No. 243 of the Max-Planck-Institut fuer Meteorologie , Hamburg , Germany .  

  18. Lindqvist , H. , Muinonen , K. and Nousiainen , T . 2009 . Light scattering by coated Gaussian and aggregate particles . J. QuanL Spectrosc. RadiaL Transfer 110 , 1398 – 1410 . doi: https://doi.org/10.1016/j.jqsrt.2009.01.015 .  

  19. Macke , A. and Mishchenlco , M. I . 1996 . Applicability of regular particle shapes in light scattering calculations for atmospheric ice particles . Appl. Opt . 35 , 4291 – 4296 . doi: https://doi.org/10.1364/A0.35.004291 .  

  20. Mishchenko , M. I. and Travis , L. D . 1998 . Capabilities and limitations of a current Fortran implementation of the T-Matrix method for randomly oriented, rotationally symmetric scatterers . J. QuanL Spectrosc. Ra-diat. Transfer 60 , 309 – 324 . doi: https://doi.org/10.1016/S0022-4073(98)00008-9 .  

  21. Muller , H. and Quenzel , H . 1985 . Information content of multispectral lidar measurements with respect to the aerosol size distribution . AppL Opt . 24 , 648 – 654 . doi: https://doi.org/10.1364/A0.24.000648 .  

  22. Muller , D. , Wandinger , U. and Ansmann , A . 1999 . Microphysical particle parameters from extinction and backscatter lidar data by inversion with regularization: theory . AppL Opt . 38 , 2346 – 2357 . doi: https://doi.org/10.1364/A0.38.002346 .  

  23. Muller , D. , Ansmann , A. , Freudenthaler , V. , Kandler , K. , Toledano , C. , and co-authors . 2010 . Mineral dust observed with AERONET Sun photometer, Raman lidar, and in situ instruments during SA-MUM 2006: shape-dependent particle properties. J. Geophys. Res . 115 , D11207 . doi: https://doi.org/10.1029/2009JDO12523 .  

  24. Muller , T. , Schaditz , A. , Kandler , K. and Wiedensohler , A . 2011 . Spec-tral particle absorption coefficients, single scattering albedos, and imaginary parts of refractive indices from ground based in-situ mea-surements at Cape Verde Island during SAMUM-2. Tellus 63B , doi: https://doi.org/10.1111/j.1600-0889.2011.00572.x .  

  25. Nousiainen , T . 2009 . Optical modeling of mineral dust particles: a review . J. QuanL Spectrosc. RadiaL Transfer 110 , 1261 – 1279 . doi: https://doi.org/10.1016/j.jqsrt.2009.03.002 .  

  26. Osterloh , L. , Böckmann , C. , Mamouri , R. E. and Papayannis , A . 2011 . An adaptive base point algorithm for the retrieval of aerosol microphysical properties . Open Atmos. Sci. J . 5 , 61 – 73 . doi: https://doi.org/10.2174/1874282301105010061 .  

  27. Piller , N. B. and Martin , O. J. F . 1998 . Increasing the performance of the coupled-dipole approximation: a spectral approach . IEEE Trans. Antennas Propag . 46 , 1126 – 1137 . doi: https://doi.org/10.1109/8.718567 .  

  28. Satheesha , S. K. and Moorthy , K. K . 2005 . Radiative effects of natural aerosols: a review . Atmos. Environ . 39 , 2089 – 2110 . doi: https://doi.org/10.1016/j.atmosenv.2004.12.029 .  

  29. Scheuvens , D. , Kandler , K. , Kiipper , M. , Lieke , K. , Zorn , S. , and co-authors . 2011 . Individual-particle analysis of airborne dust samples collected over Morocco in 2006 during SAMUM-1. Tellus 63B, in press.  

  30. Sokolilc , I. N. and Toon , O. B . 1999 . Incorporation of mineralogi-cal composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths . J. Geophys. Res . 104 , 9423 – 9444 . doi: https://doi.org/10.1029/1998JD200048 .  

  31. Tesche , M. , Ansmann , A. , Muller , D. , Althausen , D. , Mattis , I. , and co-authors . 2009 . Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM. Tellus 61B , 144 - 164 . doi: https://doi.org/10.1111/j.1600-0889.2008.00390.x .  

  32. Tesche , M. , Groß , S. , Ansmann , A. , Muller , D. , Althausen , D. , and co-authors . 2011 . Profiling of Saharan dust and biomass burning smoke with multiwavelength polarization Raman lidar at Cape Verde. Tellus 63B , doi: https://doi.org/10.1111/j.1600-0889.2011.00548.x .  

  33. Toledano , C. , Wiegner , M. , Garhammer , M. , Seefeldner , M. , Gasteiger , J. , and co-authors . 2009 . Spectral aerosol optical depth characteri-zation of desert dust during SAMUM 2006. Tellus 61B , 216 - 228 . doi: https://doi.org/10.1111/j.1600-0889.2008.00382.x .  

  34. Ulanowslci , Z. , Bailey , J. , Lucas , P. W. , Hough , J. H. and Hirst , E . 2007 . Alignment of atmospheric mineral dust due to electric field . Atmos. Chem. Phys . 7 ( 24 ), 6161 – 6173 . doi: https://doi.org/10.5194/acp-7-6161-2007 .  

  35. Valery , A. , Cartwright , R. , Fausett , E. , Ossipov , A. , Pasko , E. , and co-authors . 1999 . HyperFun project: a framework for collaborative multidimensional F-rep modeling. Eurographics/ACM SIGGRAPH Workshop Implicit Surfaces 99 , Bordeaux, France.  

  36. Veselovslcii , I. , Dubovilc , O. , Kolgotin , A. , Lapyonok , T. , Di Girolamo , R , and co-authors . 2010 . Application of randomly ori-ented spheroids for retrieval of dust particle parameters from mul-tiwavelength lidar measurements. J. Geophys. Res . 105 , D21203 . doi: https://doi.org/10.1029/2010JDO14139 .  

  37. Weinzierl , B. , Petzold , A. , Esselborn , M. , Wirth , M. , Rasp , K. , and co-authors . 2009 . Airborne measurements of dust layer properties, parti-cle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus 61B , 96 - 117 . doi: https://doi.org/10.1111/j.1600-0889.2008.00392.x .  

  38. Wiegner , M. , Gasteiger , J. , Kandler , K. , Weinzierl , B. , Rasp , K. , and co-authors . 2009 . Numerical simulations of optical properties of Saharan dust aerosols with emphasis on lidar applications. Tellus 61B , 180 - 194 . doi: https://doi.org/10.1111/j.1600-0889.2008.00381.x .  

  39. Yang , P. and Liou , K. N . 1997 . Light scattering by hexagonal ice crystals: solutions by a ray-by-ray integration algorithm . J. Opt. Soc. Am. A 14 , 2278 – 2289 . doi: https://doi.org/10.1364/JOSAA.14.002278 .  

  40. Yurlcin , M. A. and Hoekstra , A. G . 2008 . User manual for the Dis-crete Diploe Approximation Code “Amsterdam DDA” (version 0 . 78.2 ).  

  41. Yurlcin , M. A. , Maltsev , V. P. and Hoekstra , A. G . 2007 . The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength . J. Quant. Spectrosc. Radiat. Transf 106 , 546 – 557 . doi: https://doi.org/10.1016/j.jqsrt.2007.01.033 .  

  42. Yurkin , M. A. , Min , M. and Hoekstra , A. G . 2010 . Application of the discrete dipole approximation to very large refractive in-dices: filtered coupled dipoles revived . Phys. Rev. E 82 , 036703 . doi: https://doi.org/10.1103/PhysRevE.82.036703 .  

  43. Zubko , E. , Muinonen , K. , Shkuratov , Y. , Videen , G. and Nousi-ainen , T . 2007 . Scattering of light by roughened Gaussian ran-dom particles . J. Quant. Spectrosc. Radiat. Transfer 106 , 604 – 615 . doi: https://doi.org/10.1016/j.jqsrt.2007.01.050 .  

comments powered by Disqus