Start Submission Become a Reviewer

Reading: Gas diffusion through columnar laboratory sea ice: implications for mixed-layer ventilation ...

Download

A- A+
Alt. Display

Original Research Papers

Gas diffusion through columnar laboratory sea ice: implications for mixed-layer ventilation of CO2 in the seasonal ice zone

Authors:

B. Loose ,

Lamont-Doherty Earth Observatory of Columbia University; Department of Earth and Environmental Sciences, Columbia University; Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, US
X close

P. Schlosser,

Lamont-Doherty Earth Observatory of Columbia University; Department of Earth and Environmental Sciences, Columbia University; Department of Earth and Environmental Engineering, Columbia University, US
X close

D. Perovich,

US Army Corps of Engineers Cold Regions Research and Engineering Laboratory, US
X close

D. Ringelberg,

US Army Corps of Engineers Cold Regions Research and Engineering Laboratory, US
X close

D.T. Ho,

Department of Oceanography, University of Hawai’i at Manoa, US
X close

T. Takahashi,

Lamont-Doherty Earth Observatory of Columbia University; Department of Earth and Environmental Sciences, Columbia University, US
X close

J. Richter-Menge,

US Army Corps of Engineers Cold Regions Research and Engineering Laboratory, US
X close

C.M. Reynolds,

US Army Corps of Engineers Cold Regions Research and Engineering Laboratory, US
X close

W.R. Mcgillis,

Lamont-Doherty Earth Observatory of Columbia University; Department of Earth and Environmental Engineering, Columbia University, 918 Seeley Mudd Building, Columbia University, US
X close

J.-L. Tison

Laboratoire de Glaciologie, Université Libre de Bruxelles, BE
X close

Abstract

Gas diffusion through the porous microstructure of sea ice represents a pathway for ocean.atmosphere exchange and for transport of biogenic gases produced within sea ice. We report on the experimental determination of the bulk gas diffusion coefficients, D, for oxygen (O2) and sulphur hexafluoride (SF6) through columnar sea ice under constant ice thickness conditions for ice surface temperatures between -4 and -12°C. Profiles of SF6 through the ice indicate decreasing gas concentration from the ice/water interface to the ice/air interface, with evidence for solubility partitioning between gas-filled and liquid-filled pore spaces. On average, DSF6 was 1.3 × 10-4 cm2 s-1 (±40%) and DO2 was 3.9 × 10.5 cm2 s-1 (±41%). The preferential partitioning of SF6 to the gas phase, which is the dominant diffusion pathway produced the greater rate of SF6 diffusion. Comparing these estimates ofD with an existing estimate of the air.sea gas transfer through leads indicates that ventilation of the mixed layer by diffusion through sea ice may be negligible, compared to air.sea gas exchange through fractures in the ice pack, even when the fraction of open water is less than 1%.

How to Cite: Loose, B., Schlosser, P., Perovich, D., Ringelberg, D., Ho, D.T., Takahashi, T., Richter-Menge, J., Reynolds, C.M., Mcgillis, W.R. and Tison, J.-L., 2011. Gas diffusion through columnar laboratory sea ice: implications for mixed-layer ventilation of CO2 in the seasonal ice zone. Tellus B: Chemical and Physical Meteorology, 63(1), pp.23–29. DOI: http://doi.org/10.1111/j.1600-0889.2010.00506.x
  Published on 01 Jan 2011
 Accepted on 12 Aug 2010            Submitted on 30 Jun 2009

References

  1. Aachib , M. , Mbonimpa , M. and Aubertin , M . 2004 . Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers . Water Air Soil Pollut . 156 , 163 – 193 .  

  2. Bari , S. A. and Hallett , J . 1974 . Nucleation and growth of bubbles at an ice-water interface . J. Glaciol . 13 , 489 – 520 .  

  3. Bullister , J. , Wisegarver , D. P. and Menzia , F. A . 2002 . The solubility of sulfur hexafluoride in water and seawater . Deep-Sea Res. Part A—Oceanogr Res. Papers 49 , 175 – 187 .  

  4. Cole , D. and Schapiro , L. H . 1998 . Observations of brine drainage networks and microstructure of first-year sea ice . J. Geophys. Res . 103 , 21739 – 21750 .  

  5. Cox , G. F. N. and Weeks , W. F . 1983 . Equations for determining the gas and brine volumes in sea-ice samples . J. Glaciol . 29 , 306 – 316 .  

  6. Cox , G. F. N. and Weeks , W. F . 1988 . Numerical simulations of the profile properties of undeformed first-year sea ice during the growth season . J. Geophys. Res . 93 , 12449 – 12460 .  

  7. Craig , H. and Hayward , T . 1987 . Oxygen supersaturation in the ocean: biological versus physical contributions . Science 235 , 199 – 202 .  

  8. Delille , B. , Jourdain , B. , Borges , A. V. , Tison , J.-L. and Delille , D. 2007. Biogas (CO2,O2, dimethylsulfide) dynamics in spring Antarctic fast ice. Limna Oceanogr . 52 , 1367 - 1379 .  

  9. Frankenstein , G. E. and Garner , R . 1967 . Equations for determining the brine volume of sea ice from —0.5 °C to —22.9 °C. J. Glacia 6 , 943 – 944 .  

  10. Golden , K. M. , Ackley , S. F. and Lytle , V . 1. 1998 . The percolation phase transition in sea ice . Science 282 , 2238 – 2241 .  

  11. Golden , K. M. , Heaton , A. L. , Eicken , H. and Lytle , V. I . 2006 . Void bounds for fluid transport in sea ice . Mech. Mater 38 , 801 – 817 .  

  12. Golden , K. M. , Eicken , H. , Heaton , A. L. , Miner , J. , Pringle , D. J. and co-authors . 2007 . Thermal evolution of permeability and microstructure in sea ice. Geophys. Res. Lett. 34 , doi: https://doi.org/10.1029/2007GL030447 .  

  13. Gosink , T. A. , Pearson , J. G. and Kelly , J. J . 1976 . Gas movement through sea-ice . Nature 263 , 41 – 42 .  

  14. Gow , A. J. , Meese , D. A. , Perovich , D. K. and Tucker DI , W. B. 1990 . The anatomy of a freezing lead . J. Geophys. Res . 95 , 18221 – 18232 .  

  15. Helmke , E. and Horst , W . 1995 . Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter . Marine EcoL Progress Ser 117 , 269 – 287 .  

  16. Hemminsen , E . 1959 . Permeation of gases through ice . Tellus 11 , 355 – 359 .  

  17. Ho , D. T. B. liven , L. , Wanninkhof , R. and Schlosser , P. 1997. The effect of rain on air-water gas exchange. Tellus 49B , 149 - 158 .  

  18. Kawamoto , K. , Moldrup , R , Schjonning , P. , Iversen , B. V. , Rolston , D. E. and co-authors . 2006 . Gas transport parameters in the vadose zone: gas diffusivity in field and lysimeter soil Profiles. Vadose Zone J . 5 , 1194 - 1204 .  

  19. King , D. B. and Saltzman , E. S . 1995 . Measurement of the diffusion coefficient of sulfur hexafluoride in water . J. Geophys. Res . 100 , 7083 – 7088 .  

  20. Kottmeier , S. T. and Sullivan , C. W . 1990 . Bacterial biomass and pro-duction in pack ice of Antarctic marginal ice edge zones . Deep-Sea Res . 37 , 1311 – 1330 .  

  21. Light , B. , Maykut , G. A. and Grenfell , T. C . 2003 . Effects of temperature on the microstructure of first-year Arctic sea ice. J. Geophys. Res. 108 , doi: https://doi.org/10.1029/2001JC000887 .  

  22. Loose , B. , McGillis , W. R. , Schlosser , P. , Perovich , D. and Takahashi , T . 2009 . The effects of freezing, growth and ice cover on gas transport processes in laboratory seawater experiments. Geophys. Res. Lett. 36 , doi: https://doi.org/10.1029/2008GL036318 .  

  23. Moldrup , R , Olesen , T. , Yoshikawa , S. , Komatsu , T. and Rolston , D. E . 2004 . Three-porosity model for predicting the gas diffusion coefficient in undisturbed soil . Soil Sci. Soc. Am. J . 68 , 750 – 759 .  

  24. Morita , P. J . 1975 . Psychrophylic bacteria . Bacteria Rev . 39 , 144 – 167 .  

  25. Notz , D. and Worster , M. G . 2009 . Desalination processes of sea ice revisited. J. Geophys. Res. 114 , doi: https://doi.org/10.1029/2008JC004885 .  

  26. O'Brien , R. N. and Hyslop , W. F . 1977 . A laser interferometric study of the diffusion of 02, N2, H2 and Ar into water . Can. J. Chem . 55 , 1415 – 1421 .  

  27. Papadimitriou , S. , Kennedy , H. , Kattner , G. , Diecicmann , G. S. and Thomas , D. N . 2003 . Experimental evidence for carbonate precipi-tation and CO2 degassing during ice formation . Geochimica et Cos-mochimica Acta 68 , 1749 – 1761 .  

  28. Perovich , D. K. and Gow , A., J. 1996 . A quantitative description of sea ice inclusions . J. Geophys. Res . 101 , 18327 – 18343 .  

  29. Richardson , C . 1976 . Phase relationships in sea ice as a function of temperature . J. Glacia 17 , 507 – 519 .  

  30. Stephens , B. B. and Keeling , R. E 2000 . The influence of Antarctic sea ice on glacial-interglacial CO2 variations . Nature 404 , 171 – 174 .  

  31. Takahashi , T. , Sutherland , S. C. , Wanninlchof , R. , Sweeney , C. , Feely , R. A. and co-authors . 2009 . Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res. Part 11 56 , 554 - 577 .  

  32. Tick , G. R. , McColl , C. M. , Yolcubal , I. and Brusseau , M. L . 2007 . Gas-phase diffusive tracer test for the in-situ measurement of tortuosity in the vadose zone . Water Air Soil Pollut . 184 , 355 – 362 .  

  33. Tison , J.-L. , Haas , C. , Gowing , M. M. , Sleewaegen , S. and Bernard , A . 2002 . Tank study of physico-chemical controls on gas content and composition during growth of young sea ice . J. Glaciol . 48 , 177 – 191 .  

  34. Toggweiler , J. R . 1999 . Variation of atmospheric CO2 by ventilation of the ocean's deepest water . Paleoceanography 14 , 572 – 588 .  

  35. Vogel , H. J . 1997 . Morphological determination of pore connectivity as a function of pore size using serial sections. Eur. J. Soil Sci . 48 , 365 – 377 .  

  36. Wanninlchof , R. , Ledwell , J. R. , Broecker , W. S. and Hamilton , M . 1987 . Gas exchange on Mono Lake and Crowley Lake, California . J. Geophys. Res . 92 , 14567 – 14580 .  

  37. Wanninlchof , R. , Ledwell , J. R. and Watson , A. J . 1991 . Analysis of sulfur hexafluoride in seawater . J. Geophys. Res . 96 , 8733 – 8740 .  

  38. Webb , S. W. and Pruess , K . 2003 . The use of Fick's Law for modeling trace gas diffusion in porous media . Transport Porous Media 51 , 327 – 341 .  

  39. Weeks , E. P. , Earp , D. E. ,and Thompson, G. M. 1982. Use of atmospheric fluorocarbons F-11 and F-12 to determine the diffusion parameters of the unsaturated zone in the Southern High Plains of Texas. Water Resources Res. 18 , 1365 - 1378 .  

  40. Weiss , R. F . 1970 . The solubility of nitrogen, oxygen and argon in water and seawater . Deep-Sea Res . 17 , 721 – 735 .  

  41. Werner , D. and Hhener , P . 2003 . In situ method to measure effective and sorption-affected gas-phase diffusion coefficients in soils . Environ. Sci. TechnoL 37 , 2502 – 2510 .  

  42. Zalca , J. M. , Reyes , S. C. and Iglesia , E . 2003 . Monte-Carlo simulations of surface and gas phase diffusion in complex porous structures. Chem . Eng. Sci . 58 , 4605 – 4617 .  

  43. Zemmelink , H. J. , Dacey , J. W. H. , Houghton , L. , Hintsa , E. J. and Liss , P. S . 2008 . Dimethylsulfide emissions over the multi-year ice of the western Weddell Sea. Geophys. Res. Lett. 35 , doi: https://doi.org/10.1029/2007GL031847 .  

comments powered by Disqus