Aben , I ., Hasekamp , O. and Hartmann , W. 2007. Uncertainties in the space-based measurements of CO2 columns due to scattering in the Earth's atmosphere. J. Quant. Spectrosc. Radiat. Transfer 104 , 450 - 459 .
Abshire , J. B. , Collatz , G. J. , Sun , X. , Riris , H. , Andrews , A. E. and co-authors . 2001 . Laser sounder technique for remotely measuring atmospheric CO2 concentrations. EOS, Trans. Am. Geophys. Un . 82 ( 47 ), Fall Meet. Suppl., Abstract GC32A-0221. Available from http://www.agu.org/meetings/ fm01/waisfm01.html.
Abshire , J. B. , Riris , H. , Sun , X. , Krainak , M. , Kawa , S. and co-authors . 2007 . Lidar approach for measuring the CO2 concentrations in the tro-posphere from space. In: Proceedings of 2007 Conference on Lasers and Electro-Optics (CLEO-2007 . Optical Society of America, Paper CTh115, ISBN: 978-1-55752-834-6.
Abshire , J. B. , Riris , H. , Hasselbrack , W. , Allan , G. , Weaver , C. and co-authors . 2009a . Airborne measurements of CO2 column absorp-tion using a pulsed wavelength-scanned laser sounder instrument. In: Proceedings of 2009 Conference on Lasers and Electro-Optics (CLEO-2009 . Optical Society of America, Paper CFU-2, ISBN: 978-1-55752-869-8.
Abshire , J. B. , Riris , H. , Allan G. R. , Weaver , C. , Hassel-brack , W. and co-authors . 2009b . Pulsed airborne lidar mea-surements of atmospheric CO2 column absorption and line shapes from 3-13 km altitudes. EOS, Trans. Am. Geophys. Un . 90 ( 52 ), Fall Meet. Suppl., Abstract A34C-05. Available from http://www.agu.org/meetings/fm09/waisfm09.html.
Allan G. R. , Riris , H. , Abshire J. B. , Sun X. , Wilson E. and co-authors . 2008 . Laser sounder for active remote sensing mea-surements of CO2 concentrations. In: Proceedings of the 2008 IEEE Aerospace Conference . IEEE, Big Sky, MT. 1534-1540, doi: https://doi.org/10.1109/AER0.2008.4526387 .
Amediek , A. , Fix , A. , Wirth , M. and Ehret , G. 2008. Development of an OPO system at 1.57 itm for integrated path DIAL measure-ment of atmospheric carbon dioxide. AppL Phys. B 92 , 295 - 302 , doi: https://doi.org/10.1007/s00340-008-3075-6 .
Amediek , A. , Fix , A. , Ehret , G. , Caron , J. and Durand , Y. 2009. Air-borne lidar reflectance measurements at 1.57 um in support of the A-SCOPE mission for atmospheric CO2. Atmos. Meas. Tech. Dis-cuss . 2 , 1487 - 1536 .
Browell , E. V. , Dobler , J. , Kooi , S. , Choi , Y. , Harrison , F. and co-authors . 2009 . Airborne validation of active CO2 LAS measurements. EOS, Trans. Am. Geophys. Un . 90 ( 52 ), Fall Meet. Suppl., Abstract A34C-04. Available from http://www.agu.org/meetings/fm09/waisfm09.html.
Caron , J. and Durand , Y ., 2009 . Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2 . Appl. Opt . 48 , 5413 – 5422 .
Dufour E. and Breon , F. M . 2003 . Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: error anal-ysis . AppL Opt . 42 , 3595 – 3609 .
Durand , Y. , Caron , J. , Bensi , P. , Ingmann , P. , Bezy , J. and co-authors . 2009 . A-SCOPE: concepts for an ESA mission to measure CO2 from space with a lidar. In: Proceedings of the 8th International Sympo-sium on Tropospheric Profiling , Delft University of Technology, the Netherlands, ISBN 978-90-6960-233-2.
Ehret , G. , Kiemle , C. , Wirth , M. , Amediek , A. , Fix , A. and co-authors . 2008 . Space-borne remote sensing of CO2, Cat, and N20 by inte-grated path differential absorption lidar: a sensitivity analysis. AppL Phys. B 90 , 593 - 608 , doi: https://doi.org/10.1007/s00340-007-2892-3 .
ESA A-SCOPE Mission Assessment Report. 2008 . Available from http://esamultimedia.esa.int/docs/5P1313-1_ASCOPE.pdf. Accessed December 2009 .
Fan , S. , Gloor , M. , Mahlman , J. , Pacala , S. , Sarmiento , J. and co-authors . 1998 . A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282 , 442 - 446 .
Gibert , F. , Flamant , P. H. , Bruneau , D. and Loth , C. 2006. Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer . AppL Opt . 45 ( 18 ), 4448 - 4458 .
Gibert , F. , Flamant , P. H. and Cuesta , J. 2008. Vertical 2-um hetero-dyne differential absorption lidar measurements of mean CO2 mixing ratio in the troposphere. J. Atmos. Ocean. TechnoL 25 , 1477 - 1497 , doi: https://doi.org/10.1175/2008JTECHA1070.1 .
Hetch , E . 2000 . Optics, second edition . Addison-Wesley, Reading, MA , USA .
Kameyama , S. , Imaki , M. , Hirano , Y. , Ueno , S. , Kawakami , S. and co-authors . 2009 . Development of 1.6 um continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing. Opt. Lett . 34(10 ), 1513 - 1516 .
Kuang , Z. , Margolis , J. , Toon , G. , Crisp D. and Yung , Y ., 2002 . Space-borne measurements of atmospheric CO2 by high-resolution NIR spectrometry of reflected sunlight: an introductory study . Geophys. Res. Let . 29 ( 15 ), 1716 , doi: https://doi.org/10.1029/2001GL014298 .
Koch , G. , Barnes , B. W. , Petros , M. , Beyon , J. Y. , Amzajerdian , F. and co-authors . 2004 . Coherent differential absorption lidar measurements of CO2 . AppL Opt . 43 ( 26 ), 5092 - 5099 .
Koch , G. J. , Beyon , J. Y. , Gibert , E , Barnes , B. W. , Ismail , S. and co-authors . 2008 . Side-line tunable laser transmitter for dif-ferential absorption lidar measurements of CO2: design and appli-cation to atmospheric measurements. AppL Opt . 47(7) , 944 - 956 , doi: https://doi.org/10.1364/A0.47.000944 .
Krainak , MA , Andrews , A. E. , Allan , G R. , Burr , J. F. , Riris , H. and co-authors . 2003 . Measurements of atmospheric CO2 over a hor-izontal path using a tunable-diode-laser and erbium-fiber-amplifier at 1572 nm. In: Proceedings of the Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference . Tech-nical Digest, Optical Society of America, paper CTuX4, 878 - 881 , ISBN: 1-55752-748-2.
Mao , J. and Kawa , S. R . 2004 . Sensitivity Study for Space-based Mea-surement of Atmospheric Total Column Carbon Dioxide by Reflected Sunlight . AppL Opt . 43 , 914 – 927 .
Mao , J. , Kama , S R. , Abshire , J. B. and Riris , H. 2007. Sensitivity studies for a space-based CO2 laser sounder. EOS, Trans. Am. Geophys. Un . 88 ( 52 ). Fall Meet. Suppl., Abstract A13D-1500.
Measures, R. , 1992. Laser Remote Sensing: Fundamentals and Appli-cations . Krieger Publishing Company, New York.
NASA ASCENDS Mission Science Definition and Planning Workshop Report . 2008 . Available from: http://cce.nasa.gov/ascends/12-30-08%20ASCENDS_Worlcshop_Report%20cleampdf. Accessed De-cember 2009.
NASA-Glenn . 2010 . Available from: http://www . grc.nasa.gov/ WWW/AircraftOps/Learjet.html. Accessed December 2009 .
O'Brien D. M. and Rayner , P. J . 2002 . Global observations of carbon budget 2, CO2 concentrations from differential absorption of reflected sunlight in the 1.61 um band of CO2 . J. Geophys. Res . 107 , 4354 , doi: https://doi.org/10.1029/2001JDO00617 .
Phillips , M. W. , Ranson , J. , Spiers , G. D. and Menzies , R. T . 2004 . Development of a coherent laser transceiver for the NASA CO2 laser absorption spectrometer instrument. In: Proceedings of 2004 Confer-ence on Lasers and Electro-Optics (CLEO-2004 , Optical Society of America, Paper CMDD2.
Rids , H. , Abshire , J. , Allan , G. , Burris , J. , Chen , J. and co-authors . 2007 . A laser sounder for measuring atmospheric trace gases from space. Proc. SPIE 6750 , 67500U , doi: https://doi.org/10.1117/12.737607 .
Rodgers , C . 2000 . Inverse Methods for Atmospheric Soundings, The-ory and Practice . Volume 2, Series on Atmospheric, Oceanic and Planetary Physics, World Scientific, 238.
Sakaizawa , D. , Nagasawa , C. , Nagai , T. , Abo , M. , Shibata , Y. and co-authors . 2009 . Development of a 1.6 itm differential absorption li-dar with a quasi-phase-matching optical parametric oscillator and photon-counting detector for the vertical CO2 profile. AppL Opt . 48 ( 4 ), 748 - 757 .
Stephen , M. , Krainak , M. , Riris H. and Allan , G. R . 2007 . Narrowband, tunable, frequency-doubled, erbium-doped fiber-amplifed transmitter . Opt. Lett . 32 ( 15 ), 2073 – 2076 .
Stephen , M. A. , Mao , J. , Abshire , J. B. , Kawa , S. R. , Sun X. and co-authors . 2008 . Oxygen spectroscopy laser sounding instrument for remote sensing of atmospheric pressure. IEEE Aerospace Conf 1-6 , doi: https://doi.org/10.1109/AER0.2008.4526388 .
Tans , P. P. , Fung , I. Y. and Takahashi , T . 1990 . Observational constraints on the global atmospheric CO2 budget . Science 247 , 1431 – 1438 .
Tsai , B.-M. and Gardner , C. S . 1985 . Time-resolved speckle effects on the estimation of laser-pulse arrival times . J. Opt. Soc. Am. A 2 , 649 – 656 .
Uchino, O. and co-authors . 2009 . Initial validation of GOSAT standard products. In: Proceedings of the 8th Intemaitonal Carbon Conference , Jena, Germany, September 13-19.
United States National Research Council . 2007 . Earth science and appli-cations from space: national imperatives for the next decade and be-yond. Available from http://www.nap.edu/. Accessed December 2009.
Weitkamp , C. 2005. Lidar: Range Resolved Optical Remote Sensing of the Atmosphere . Springer, Berlin, Heidelberg, New York.
Werle , R , Mucke , R. and Slemr , F . 1993 . The limits of signal aver-aging in atmospheric trace-gas monitoring by Tunable Diode-Laser Absorption Spectroscopy (TDLAS) . AppL Phys. B 57 , 131 – 139 .
Werle P. , Mazzinghi , P. , D'Amato , F. , De Rosa , M. , Maurer , K. and co-authors . 2004 . Signal processing and calibration procedures for in situ diode-laser absorption spectroscopy . Spectrochim. Acta Part A 60 , 1685– 1705 .
Yokota , T. , Oguma , H. , Morino , I. , Higurashi , A. , Aoki , T. and co-authors . 2004 . Test measurements by a BBM of the nadir-looking SWIR FTS aboard GOSAT to monitor CO2 column density from space. Proc. SPIE . 5652 , 182 , doi: https://doi.org/10.1117/12.578497 .