Start Submission Become a Reviewer

Reading: Historical and future perspectives of global soil carbon response to climate and land-use ch...

Download

A- A+
Alt. Display

Original Research Papers

Historical and future perspectives of global soil carbon response to climate and land-use changes

Authors:

T. Eglin ,

Laboratoire des Sciences du Climat et de l’Environnement, IPSL-LSCE, CEA-CNRS-UVSQ, Gif-sur-Yvette, FR
X close

P. Ciais,

Laboratoire des Sciences du Climat et de l’Environnement, IPSL-LSCE, CEA-CNRS-UVSQ, Gif-sur-Yvette, FR
X close

S. L. Piao,

Departement of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, CN
X close

P. Barre,

AgroParisTEch, UMR7618 Bioemco, F-78850 Thiverval-Grignon; Laboratoire de Géologie, UMR8538, Ecole normale supérieure, 75005 Paris, FR
X close

V. Bellassen,

Laboratoire des Sciences du Climat et de l’Environnement, IPSL-LSCE, CEA-CNRS-UVSQ, Gif-sur-Yvette, FR
X close

P. Cadule,

Laboratoire des Sciences du Climat et de l’Environnement, IPSL-LSCE, CEA-CNRS-UVSQ, Gif-sur-Yvette, FR
X close

C. Chenu,

AgroParisTEch, UMR7618 Bioemco, F-78850 Thiverval-Grignon, FR
X close

T. Gasser,

Laboratoire des Sciences du Climat et de l’Environnement, IPSL-LSCE, CEA-CNRS-UVSQ, Gif-sur-Yvette, FR
X close

C. Koven,

Laboratoire des Sciences du Climat et de l’Environnement, IPSL-LSCE, CEA-CNRS-UVSQ, Gif-sur-Yvette, FR
X close

M. Reichstein,

Biogeochemical Model-Data Integration Group, Max-Planck Institute für Biogeochemistry, Hans-Knoell-Strasse 10, 07745 Jena, DE
X close

P. Smith

Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Room G45, Aberdeen, AB24 3UU, Scotland, GB
X close

Abstract

In this paper, we attempt to analyse the respective influences of land-use and climate changes on the global and regional balances of soil organic carbon (SOC) stocks. Two time periods are analysed: the historical period 1901–2000 and the period 2000–2100. The historical period is analysed using a synthesis of published data as well as new global and regional model simulations, and the future is analysed using models only. Historical land cover changes have resulted globally in SOC release into the atmosphere. This human induced SOC decrease was nearly balanced by the net SOC increase due to higher CO2 and rainfall. Mechanization of agriculture after the 1950s has accelerated SOC losses in croplands, whereas development of carbon-sequestering practices over the past decades may have limited SOC loss from arable soils. In some regions (Europe, China and USA), croplands are currently estimated to be either a small C sink or a small source, but not a large source of CO2 to the atmosphere.

In the future, according to terrestrial biosphere and climate models projections, both climate and land cover changes might cause a net SOC loss, particularly in tropical regions. The timing, magnitude, and regional distribution of future SOC changes are all highly uncertain. Reducing this uncertainty requires improving future anthropogenic CO2 emissions and land-use scenarios and better understanding of biogeochemical processes that control SOC turnover, for both managed and un-managed ecosystems.

How to Cite: Eglin, T., Ciais, P., Piao, S.L., Barre, P., Bellassen, V., Cadule, P., Chenu, C., Gasser, T., Koven, C., Reichstein, M. and Smith, P., 2010. Historical and future perspectives of global soil carbon response to climate and land-use changes. Tellus B: Chemical and Physical Meteorology, 62(5), pp.700–718. DOI: http://doi.org/10.1111/j.1600-0889.2010.00499.x
7
Views
2
Downloads
  Published on 01 Jan 2010
 Accepted on 9 Jul 2010            Submitted on 7 Dec 2009

References

  1. Alcamo, J. 1994. IMAGE 2.0: Integrated Modelling of Global Climate Change . Kluwer Academic Publishers , Dordrecht .  

  2. Anger , D. A. and Erilcsen-Hamel , N. S . 2005 . Full inversion tillage and organic carbon distribution in soil profiles: a meta-analysis . Soil Sci. Soc. Am. J . 72 , 1370 – 1374 .  

  3. Angert , A. , Biraud , S. , Bonfils , C. , Henning , C. C. , Buermann , W. and co-authors . 2005 . Drier summers cancel out the CO2 uptake enhance-ment induced by warmer springs. Pmc. Natl. Acad. Sci. USA 102 , 10823 - 10827 .  

  4. Arrouays , D. , Balesdent , J. , Mariotti , A. and Girardin , C. 1995. Mod-elling organic-carbon turnover in cleared temperate forest soils con-verted to maize cropping by using C-13 natural abundance measure-ments. Plant Soil . 173 , 191 - 196 .  

  5. Baker , J. M. , Ochsner , T. E. , Venterea , R. T. and Griffis , T. J. 2007. Tillage and soil carbon sequestration -What do we really know? Agric. Ecosyst. Environ . 118 , 1 - 5 .  

  6. Baldocchi , D . 2008 . Breathing of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems . Austr J. Botany 56 , 1 – 26 .  

  7. Balesdent , J. , Wagner , G. H. and Mariotti , A. 1988. Soil organic mat-ter in long-term field experiments as revealed by carbon-13 natural abundance. Soil Sci. Soc. Am . 52 , 118 - 124 .  

  8. Basile-Doelsch , I. , Brun , T. , Borschneck , D. , Masion , A. , Marol , C. and co-authors . 2009 . Effect of landuse on organic matter stabilized in organomineral complexes: A study combining density fractionation, mineralogy and delta C-13. Geoderma 151 , 77 - 86 .  

  9. Beilman , D. W. , MacDonald , G. M. , Smith , L. C. and Reimer , P . J. 2009 . Carbon accumulation in peatlands of West Siberia over the last 2000 years. Global Biogeochem. Cycles 23 , GB1012 , doi: https://doi.org/10.1029/2007GB003112 .  

  10. Bellamy , P. H. , Loveland , P. J. , Bradley , R. I. , Lark , R. M. and Kirk , G. J. D. 2005. Carbon losses from all soils across England and Wales 1978-2003. Nature 437 , 245 - 248 .  

  11. Bellassen , V , Manlay , R J. , Chery , J. P. , Gitz , V. , Toure , A. and co-authors . 2010a . Multi-criteria spatialization of soil organic carbon sequestration potential from agricultural intensification in Senegal. Clim. Change 98 , 213 - 243 .  

  12. Bellassen , V. , Le Maire , G. , Dhote , J. F. , Viovy , N. and Ciais , P. 2010b. Modeling forest management within a global vegetation model -Part 1: Model structure, initial results, and sensitivity analysis. Ecol. Model , in press.  

  13. Bird , M. , Chivas , A. R. and Head, J. 1996. Latitudinal gradient in carbon turnover times in forest soils. Nature 381 , 143 - 145 .  

  14. Bondeau , A. , Smith , P. C. , Zaehle , S. , Schaphoff , S. , Lucht , W. and co-authors . 2007 . Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol . 13 , 679 - 706 .  

  15. Bond-Lamberty , B. , Peckhan , S D. , Ahl , D. E. and Gower , S. T. 2007. Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450 , 89 - 92 .  

  16. Burke , I. C. , Yonker , C. M. , Parton , W J. , Cole , C. V. , Flach , K. and co-authors . 1989 . Texture, climate, and cultivation effects on soil organic-matter content in US grassland soils. Soil Sci. Soc. Am. J . 53 , 800 - 805 .  

  17. Canadell , J. G. , Le Quere , C. , Raupach , M. R. , Field , C. B. , Buitenhuis , E. T. , and co-authors . 2007 . Proc. Natl. Acad. Sci. USA 104 , 18866 – 18870 .  

  18. Cao , M. K. , Prince , S. D. and Shugart , H. H . 2002 . Increasing ter-restrial carbon uptake from the 1980s to the 1990s with changes in climate and atmospheric CO2 . Global Biogeochem. Cycles 16 , 1069 , doi: https://doi.org/10.1029/2001GB001553 .  

  19. Ciais , R , Schelhaas , M J. , Zaehle , S. , Piao , S. L. , Cescatti , A. and co-authors . 2008 . Carbon accumulation in European forests. Nat. Geosci . 1 , 425 - 429 , doi: https://doi.org/10.1038/ngeo233 .  

  20. Cox , P. M. , Betts , R. A. , Jones , C. D ., Spall , S. A. and Totterdell , I. J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408 , 184 - 187 .  

  21. Davidson , E. A. and Janssens , I. A . 2006 . Temperature sensitivity of soil carbon decomposition and feedbacks to climate change . Nature 440 , 165 – 173 .  

  22. de Noblet-Ducoudre , N. , Gervois , S. , Ciais , P. , Viovy , N. , Brisson , N. and co-authors . 2004 . Coupling the Soil-Vegetation-Atmosphere-Transfer Scheme ORCIAIDEE to the agronomy model STICS to study the influence of croplands on the European carbon and water budgets. Agronomie 24 , 397 - 407 .  

  23. Fang , C. S. M. , Smith , R , Moncrieff , J. B. and Smith , J. U . 2005 . Similar response of labile and resistant soil organic matter pools to changes in temperature . Nature 433 , 57 – 59 .  

  24. Feller , C. and Beare , M. H . 1997 . Physical control of soil organic matter dynamics in the tropics . Geoderma 79 , 69 – 116 .  

  25. Fierer , N. , Craine , J. M. , McLaughlan , K. and Schimel , J. P . 2005 . Litter quality and the temperature sensitivity of decomposition . Ecology 86 , 320 – 326 .  

  26. Fontaine , S. , Bardoux , G. , Abbadie , L. and Mariotti , A . 2004 . Carbon input to soil may decrease soil carbon content . EcoL Lett . 7 , 314 – 320 .  

  27. Fontaine , S. , Barot , S. , Barre , P. , Bdioui , N. , Mary , B. and co-authors . 2007 . Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450 , 277 .  

  28. Friedlingstein , R , Cox , P. , Betts , R. , Bopp , L. , von Bloh , W. and co-authors . 2006 . Climate-carbon cycle feedback analysis: results from the C4mip model intercomparison. J. Clim . 19 , 3337 - 3353 .  

  29. Gervois , S. , de Noblet-Ducoudre , N. , Viovy , N. , Ciais , P. , Brisson , N. and co-authors . 2004 . Including croplands in a global biosphere model: methodology and evaluation at specific sites. Earth Interact . 8 , 1 - 25 .  

  30. Gervois , S. , Ciais , P. , de Noblet-Ducoudre , N. , Brisson , N. , Vuichard , N. and co-authors . 2008 . Carbon and water balance of European croplands throughout the 20th century. Global Biogeochem. Cycles 22 , GB2022 , doi: https://doi.org/10.1029/2006GB002920 .  

  31. Gitz , V. and Ciais , P . 2004 . Future expansion of agriculture and pasture acts to amplify atmosphere CO2 levels in response to fossil-fuel and land-use change emissions . Clim. Change 67 , 161 – 184 .  

  32. Gottschalk , R , Bellarby , J. , Chenu , C. , Foereid , B. , Smith , P. and co-authors . 2010 . Simulation of soil organic carbon response at forest cultivation sequences using 13C measurements. Organic Geochem . 41 , 41 - 54 .  

  33. Heimann , M. and Reichstein , M . 2008 . Terrestrial ecosystem carbon dynamics and climate feedbacks . Nature 451 , 289 – 292 .  

  34. Houghton , R. A. and Hackler , J. L . 2002 . Carbon flux to the atmosphere from land-use changes. In: Trends: A Compendium of Data on Global Change , Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN.  

  35. Houghton , R. A . 2003 . Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000 . Tellus 55B , 378 – 390 .  

  36. Houghton , R. A . 2007 . Balancing the global carbon budget . Ann. Rev. Earth Planet. Sci . 35 , 313 – 347 .  

  37. Huang , Y. and Sun , W . 2006 . Changes in topsoil organic carbon of croplands in mainland China over the last two decades . Chin. Sci. Bull . 51 , 1785 – 1803 .  

  38. IPCC . 2000 . Special Report on Land Use, Land Use Change, and Forestry . Cambridge University Press, Cambridge , UK .  

  39. IPCC WGBI. (2007) Summary for policy makers. In: Working Group III Contribution to the Intergovernmental Panel on Climate Change Fourth Assessment Report. Climate Change 2007: Mitigation of Climate Change . Cambridge University Press , Cambridge .  

  40. Jain , A. K. and Yang , X. J . 2005 . Modeling the effects of two different land cover change data sets on the carbon stocks of plants and soils in concert with CO2 and climate change. Global Biogeochem. Cycles 19 , GB2015 , doi: https://doi.org/10.1029/2004GB002349 .  

  41. Jenlcinson , D. S. , Hart , P. B. S. , Rayner , J. H. and Parry , L. C . 1987 . Modelling the turnover of organic matter in long-term experiments at Rothamsted . INTECOL Bull . 15 , 1 – 8 .  

  42. Jenlcinson , D. S . 1990 . The turnover of organic carbon and nitrogen in soil . Philos. Transact. R. Soc . 329 , 361 – 368  

  43. Jenlcinson , D. S. , Adams , D. E. and Wild , A . 1991 . Model estimates of CO2 emissions from soil in response to global warming . Nature 351 , 304 – 306 .  

  44. Jobbágy , E. G. and Jackson , R. B . 2000 . The vertical distribution of soil organic carbon and its relation to climate and vegetation . EcoL AppL 10 , 423 – 436 .  

  45. Johnston , E. , Poulton , P. R. and Coleman , K . 2009 . Soil organic matter: its importance in sustainable agriculture and carbon dioxide fluxes . Adv. Agron . 101 , 1 – 57 .  

  46. Jolivet , C. , Arrouays , D. , Andreux , F. and Leveque , J . 1997 . Soil organic carbon dynamics in cleared temperate forest spodosols converted to maize cropping . Plant Soil 191 , 225 – 231 .  

  47. Jones , C. , McConnell , C. , Coleman , K. , Cox , R , Falloon , P. and co-authors . 2005 . Global climate change and soil carbon stocks: predic-tions from two contrasting models for the turnover of organic carbon in soils. Global Change Biol . 11 , 154 - 166 .  

  48. Khvorostyanov , D. V. , Krinner , G. , Ciais , R , Heimann , M. and Zimov , S. A . 2008a . Vulnerability of permafrost carbon to global warming. Part I: Model description and role of heat generated by organic matter decomposition. Tellus Ser. B -Chem. Phys. MeteoroL 60 , 250 - 264 .  

  49. Khvorostyanov , D. V. , Ciais , P. , Krinner , G. , Zimov , S. A. , Corradi , C. and co-authors . 2008b . Vulnerability of permafrost carbon to global warming. Part II: Sensitivity of permafrost carbon stock to global warming . Tellus 60B , 265 – 275 .  

  50. Kleber , M. , Sollins , P. and Sutton , R . 2007 . A conceptual model of organo-mineral interactions in soils: self-assembly of organic molec-ular fragments into zonal structures on mineral surfaces . Biogeochem-istiy 85 , 9 – 24 .  

  51. Koven , C. , Friedlingstein P. , Ciais , P. , Khvorostiyanov , D. , Krinner , G. and co-authors . 2009 . The effects of cryoturbation and insula-tion by organic matter on the formation of high-latitude soil car-bon stocks in a land surface model. Geophys. Res. Lett . 36 , L21501 , doi: https://doi.org/10.1029/2009GL040150 .  

  52. Krinner , G. , Viovy , N. , de Noblet-Ducoudre , N. , Ogee , J. , Polcher , J. and co-authors . 2005 . A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles 19 , GB1015 , doi: https://doi.org/10.1029/2003GB002199 .  

  53. Kuhlbusch , T. and Crutzen , P . 1995 . Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmo-spheric CO2 and a source of 02 . Global Biogeochem. Cycles 9 , 491 – 501 .  

  54. Kurz , W. A. , Dymond , C. C. , Stinson , G. , Rampley , G. J. , Neilson , E. T. and co-authors . 2008 . Mountain pine beetle and forest carbon feedback to climate change. Nature 452 , 987 - 990 .  

  55. Lal , R . 2003 . Soil erosion and the global carbon budget . Environ. Int . 29 , 437 – 450 .  

  56. Lal , R . 2004 . Carbon sequestration in soils of central Asia . Land Degrad. Develop . 15 , 563 – 572 .  

  57. Leemans , R. , Kreileman , E. , Zuidema , G. , Alcamo , J. , Berk , M. and co-authors . 1998 . The IMAGE User Support System: Global Change Scenarios from IMAGE 2.1. RIVM Publication (CD-ROM) 4815006. National Institute of Public Health and the Environment (RIVM), Bilthoven, Netherlands.  

  58. Leff , B. , Ramankutty , N. and Foley , J. 2004. Geographic distribution of major crops across the world. Global Biogeochem. Cycles 18 , GB1009 , doi: https://doi.org/10.1029/2003GB002108 .  

  59. Le Quere , C. , Raupach , M. R. , Canadell , J. G. , Marland , G. , Bopp , L. and co-authors . 2009 . Trends in the sources and sinks of carbon dioxide. Nat. Geosci . 2 , 831 - 836 , doi: https://doi.org/10.1038/ngeo689 .  

  60. Lewis , S. L. , Lopez-Gonzalez , G. , Sonke , B. , Affum-Baffoe , K. , Baker , T. R. and co-authors . 2009 . Increasing carbon storage in intact African tropical forests. Nature 460 , 487 - 490 .  

  61. Liski , J. , Ilvesniemi , H. , Makela , A. and Westman , C. J. 1999. CO2 emis-sions from soil in response to climatic warming are overestimated—the decomposition of old soil organic matter is tolerant of temperature. Ambio 28 , 171 - 174 .  

  62. Lloyd , J. and Taylor , J. A. 1994. On the temperature-dependence of soil respiration. Funct. EcoL 8 , 315 - 323 .  

  63. Magnani , F. , Mencuccini , M. , Borghetti , M. , Berbigier , P. , Berninger , F. and co-authors . 2007 . The human footprint in the carbon cycle of temperate and boreal forests. Nature 447 , 848 - 850 .  

  64. Mäkeld-Kurtto , R. and Sippola, J. 2002. Monitoring of Finnish arable land: changes in soil quality between 1987 and 1998. Agric. Food Sci. Finland 11 , 273 - 284 .  

  65. Malhi , Y. , Meir , P. and Brown , S. 2002. Forests, carbon and global climate. Philos. Transact. R. Soc. Lond . 360 , 1567 - 1591 .  

  66. Marland , G. , Boden , T. A. and Andres , R . J. 2005 . Global, regional, and national CO2 emissions. In: Trends: A Compendium of Data on Global Change (eds S. J. Marsland , H. Hank , J. H. Jungclaus , M. Latif and F. Roeske ).Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge.  

  67. Marris , E . 2006 . Putting the carbon back: black is the new green . Nature 442 , 624 – 626 .  

  68. McGuire , A D. , Sitch , A. , Clein , J. S. , Dargaville , R. , Esser , G. and co-authors . 2001 . Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles 15 , 183 - 206 .  

  69. Mikutta , R. , Kleber , M. , Torn , M. S. and Jahn , R . 2006 . Stabilization of soil organic matter: association with minerals or chemical recalci-trance? Biogeochemistly 77 , 25 – 56 .  

  70. Nabuurs , G J. , Thürig, E. , Heidema , N. , Armolaitis , K. , Biber , P. and co-authors . 2008 . Hotspots of the European forests carbon cycle. Forest EcoL Manage . 256 , 194 - 200 .  

  71. Nemani , R. R. , Keeling , C D. , Hashimoto , H. , Jolly , W. M. , Piper , S. C. and co-authors . 2003 . Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 300 , 1560 - 1563 .  

  72. Ogle , S. M. , Breidt, E J. , Eve , M. D. and Paustian , K. 2003. Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997. Global Change Biol . 9 , 1521 - 1542 .  

  73. Parton , W J. , Stewart , J. W. B. and Cole , C. V. 1988. Dynamics of C, N, P and S in grassland soils -a model. Biogeochemistry 5 , 109 - 131 .  

  74. Parton , W.J. , Myron , P. G. , Williams , S. A. , Easter , M. and Ojima , D. 2005. Ecological impact of historical land-use patterns in great plains: a methodological assessment . EcoL Appl . 15 , 1915– 1928 .  

  75. Paul , E. A. , Paustian , K. , Elliott , E. T. and Cole , C. V . 1997 . Soil Organic Matter in Temperate Ecosystems . CRC Press , New York .  

  76. Paustian , K. , Elliott , E. T. and Carter , M. R . 1998 . Tillage and crop management on soil C storage: use of long-term experimental data . Soil and Tillage Research 47 , 7 – 12  

  77. Paustian , K. , Six , J. , Elliott , E. T. and Hunt , H. W. 2000. Management options for reducing CO2 emissions from agricultural soils. Biogeo-chemistry 48 , 147 - 163 .  

  78. Petersen , B. M. , Berntsen , J. , Hansen , S. and Jensen , L. S. 2005. CN-SIM -a model for the turnover of soil organic matter I. Long-term carbon and radiocarbon development. Soil Biol. Biochem . 37 , 359 - 374 .  

  79. Peylin , P. , Bousquet , P. , Le Quere , C. , Sitch , S. , Friedlingstein, P. and co-authors . 2005 . Multiple constraints on regional CO2 flux varia-tions over land and oceans. Global Biogeochem. Cycles 19 , GB1011 , doi: https://doi.org/10.1029/2003GB002214 .  

  80. Piao , S. L. , Fang , J. Y. , Thou , L. M. , Thu , B. , Tan , K. and co-authors . 2005 . Changes in vegetation net primary productivity from 1982 to 1999 in China. Global Biogeochem. Cycles 19 , GB2027 , doi: https://doi.org/10.1029/2004GB002274 .  

  81. Piao , S. L. , Friedlingstein , P. , Ciais , P. , Thou , L. M. , Chen , A. P . 2006 . Effect of climate and CO2 changes on the greening of the North-ern Hemisphere over the past two decades . Geophys. Res. Lett ., 33 , L23402 , doi: https://doi.org/10.1029/2006GL028205 .  

  82. Piao , S. L. , Fang , J. , Ciais , P. , Peylin , P. , Huang , H. and co-authors . 2009a . The carbon balance of terrestrial ecosystems in China. Nature 458 , 1009 - 1013 .  

  83. Piao , S. L. , Ciais , R , Friedlingstein , P. , Noblet-Ducoudre , N. , Cadule , P. and co-authors . 2009b . Spatio-temporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical Cycles 23 , GB4026 , doi: https://doi.org/10.1029/2008GB003339 .  

  84. Pregitzer , K. S. and Euslcirchen , E. S . 2004 . Carbon cycling and storage in world forests: biome patterns related to forest age . Global Change Biol . 10 , 2052 – 2077 .  

  85. Pongratz , J. , Reick , C. , Raddatz , T. and Claussen , M. 2008. A reconstruction of global agriculture areas and land cover for the last millennium. Global Biogeochem. Cycles 22 , GB3018 , doi: https://doi.org/10.1029/2007GB003018 .  

  86. Pongratz , J. , Reick , C. , Raddatz , T. and Claussen , M. 2009. Ef-fects of anthropogenic land cover change on the carbon cycle of the last millennium. Global Biogeochem. Cycles 23 , GB3488 , doi: https://doi.org/10.1029/2009GB003488 .  

  87. Pussinen , A. , Nabuurs , G. J. , Wieggers , H. J. J. , Reinds , G. J. , Wamelinlc , G. W. W. and co-authors . 2009 . Modelling long-term impacts of en-vironmental change on mid- and high-latitude European forests and options for adaptive forest management . Forest EcoL Manage . 258 , 1806– 1813 .  

  88. Pypker , T. G. and Fredeen , A. L . 2002 . Ecosystem CO2 flux over two growing seasons for a sub-Boreal clear-cut 5 and 6 years after harvest . Agricult. Forest MeteoroL 114 , 15 – 30 .  

  89. Qiu , J. , Changseng , L. , Wang , L. , Tang , H. , Li , H. and co-authors . 2009 . Modelling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China. Global Biogeochem. Cycles 23 , GB1007 , doi: https://doi.org/10.1029/2009GB001007 .  

  90. Raich , J. W. and Schlesinger , W. H . 1992 . The global carbon-dioxide flux in soil respiration and its relationship to vegetation and climate . Tellus Ser B -Chem. Phys. MeteoroL 44 , 81 – 99 .  

  91. Reeves , M. , Lal , R. , Logan , T. and Sigaran , J . 1997 . Soil nitrogen and car-bon response to maize cropping system, nitrogen source, and tillage . Soil Sci. Soc. Am. J . 61 , 1387 – 1392 .  

  92. Reichstein , M. , Subke , J. A. , Angeli , A. C. and Tenhunen , J. D . 2005 . Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time? Global Change Biol . 11 , 1754 – 1767 .  

  93. Reichstein , M . 2008 . Impacts of climate change on forest soil carbon: principles, factors, models, uncertainties. In: Forestry and climate change (eds P. H. Freer-Smith , M. S. J. Broadmeadow and J. M. Linch ). Wallingford, OECD, Forest Research, CABI Book, Walling-ford, 127 - 135 .  

  94. Robertson , G. R , Paul , E. A. and Harwood , R. R . 2000 . Green-house gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere . Science 289 , 1922 – 1925 .  

  95. Savage , K. E. and Davidson , E. A . 2001 . Interannual variation of soil respiration in two New England forests . Global Biogeochem. Cycles 15 , 337 – 350 .  

  96. Schuur , E. A. G. , Bocicheim , J. , Canadell , J. G. , Euslcirchen , E. , Field , C. B. and co-authors . 2008 . Vulnerability of Permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58 , 701 - 714 .  

  97. Shevliakova , E. , Pacala , S. W. , Malyshev , S. , Hurtt , G. C. , Milly , P. C. D. and co-authors . 2009 . Carbon cycling under 300 years of land-use change: the importance of the secondary vegetation sink. Global Biogeochem. Cycles 23 , GB2022 , doi: https://doi.org/10.1029/2009GB002022 .  

  98. Sitch , S. , Smith , B. , Prentice , LC. , Arneth , A. , Bondeau , A. and co-authors . 2003 . Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biol . 9 , 161 - 185 .  

  99. Sitch , S. , Huntingford , C. , Gedney , N. , Levy , P. E. , Lomas , M. and co-authors . 2008 . Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dy-namic Global Vegetation Models (DGVMs). Global Change Biol . 14 , 2015 - 2039 .  

  100. Sleutel , S. , De Neve , S. and Hofman , G . 2003 . Estimates of carbon stock changes in Belgian cropland . Soil Use Manage . 19 , 166 – 171 .  

  101. Smith , P. , Goulding , K. W. , Smith , K. A. , Powlson , D. S. , Smith , J. U. and co-authors . 2001 . Enhancing the carbon sink in European agricultural soils: Including trace gas fluxes in estimates of carbon mitigation potential. Nutr CycL Agroecosyst . 60 , 237 - 252 .  

  102. Smith , P. , Andren , O. , Karlsson , T. , Perala , P. , Regina , K. and co-authors . 2005a . Carbon sequestration potential in European croplands has been overestimated. Global Change Biol . 11 , 2153 - 2163 .  

  103. Smith , J. , Smith , P. , Wattenbach , M. , Zaehle , S. , Hiederer , R. and co-authors . 2005b . Projected changes in mineral soil carbon of Euro-pean croplands and grasslands, 1990 - 2080 . Global Change Biol . 11 , 2141 - 2152 .  

  104. Smith , P. , Martino , D. , Cai , Z. , Gwary , D. , Janzen , H. H. and co-authors . 2007 . Agriculture. Chapter 8 of Climate change 2007: Mitigation. Contribution of Working group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds B. Metz , O. R. Davidson , P. R. Bosch , R. Dave , L. A. Meyer ). Cam-bridge University Press , Cambridge, United Kingdom and New York, NY, USA .  

  105. Smith , P. and Trines , E . 2007 . Agricultural measures for mitigating climate change: will the barriers prevent any benefits to developing countries? Int. J. Agric. SusL 4 , 173 – 175 .  

  106. Smith , P . 2008 . Land use change and soil organic carbon dynamics . Nutr CycL Agroecosyst . 81 , 169 – 178 .  

  107. Smith , P. , Martino , D. , Cai , Z. , Gwary , D. , Janzen , H. H. and co-authors . 2008 . Greenhouse gas mitigation in agriculture. Philos. Transact. R. Soc., B . 363 , 789 - 813 .  

  108. Tarnocai , C. , Canadell , J. G. , Schuur , E. A. G. , Kuhry , P. , Mazhitova , G. and Zimov S . 2009 . Soil organic carbon pools in the northern circum-polar permafrost region. Global Biogeochem. Cycles 23 , GB2023 , doi: https://doi.org/10.1029/2009GB002023 .  

  109. Torn , M. S. , Trumbore , S. E. , Chadwick , O. A. , Vitousek , P. M. and Hendricks , D. M. 1997. Mineral control of soil organic carbon storage and turnover. Nature 389 , 170 - 173 .  

  110. Trines , E. , Höhne , N. , Jung , M. , Skutsch , M. , Petsonlc , A. and co-authors . 2006 . Integrating agriculture, forestry, and other land use in future climate regimes: methodological issues and policy options. Netherlands Environmental Assessment Agency, Climate Change -Scientific Assessment And Policy Analysis. Report 500102 002, 154.  

  111. Trumbore , S . 2000 . Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics . Ecol. Appl . 10 , 399 – 411 .  

  112. Trumbore , S. E. , Davidson , E. A. , Decamargo , P. B. , Nepstad , D. C. and Martinelli , L. A . 1995 . Belowground cycling of carbon in forests and pastures of Eastern Amazonia . Blobal Biogeochem. Cycles 9 , 515 – 528 .  

  113. Valentini , R. , Mateucci , G. , Dolman , A. J. , Schulze , E. D. , Rebmann , C. and co-authors . 2000 . Respiration as the main determinant of carbon balance in European forests. Nature 404 , 861 - 865 .  

  114. van Oost , K. , Quine , T. A. , Govers , G. , De Gryze , S. , Six , J. , and co-authors . 2007 . The impact of agricultural soil erosion on the global carbon cycle. Science 318 , 626 - 629 .  

  115. Vetter , M. , Churkina , G. , Jung , M. , Reichstein , M. , Zaehle , S. and co-authors . 2008 . Analyzing the causes and spatial pattern of the Eu-ropean 2003 carbon flux anomaly in Europe using seven models. Biogeosciences 5 , 561 - 583 .  

  116. Walter , K. M. , Smith , L. C. and Chapin , F. S . 2007 . Methane bubbling from northern lakes: present and future contributions to the global methane budget . Philos. Trans. R. Soc. -Math. Phys. Eng. Sci . 365 , 1657 – 1676 .  

  117. Wardle , D. A. , Nilsson , M.-C. and Zackrisson, O. 2008. Fire-derived charcoal causes loss of forest humus. Science 320 , 629 .  

  118. West , T. O. and Post, W. M. 2002. Soil organic carbon sequestration rates by tillages and crop rotation: A global data analysis . Soil Sci. Soc. Am. J . 66 , 1930– 1946 .  

  119. Xie , Z. B. , Zhu , J. G. , Liu , G. , Cadisch , G. , Hasegawa , T. and co-authors . 2007 . Soil organic carbon stocks in China and changes from 1980s to 2000s . Global Change Biol . 13 , 1989– 2007 .  

  120. Yan , H. , Cao , M. , Liu , J. and Tao , B . 2007 . Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China . Agric. Ecosyst. Environ . 121 , 325 – 335 .  

  121. Zeng , N. , Qian , H. F , Rödenbeck , C. and Heimann , M . 2005 . Impact of 1998-2002 midlatitude drought and warming on terrestrial ecosys-tem and the global carbon cycle . Geophys. Res. Lett . 32 , L22709 , doi: https://doi.org/10.1029/2005GL024607 .  

  122. Zhao , M. , Heinsch , F. A. , Nemani , R. R. and Running , S. W . 2004 . Improvements of the MODIS terrestrial gross and net pri-mary production global data set . Remote Sens. Environ . 95 , 164 – 176 .  

  123. Zimov , S. A. , Schuur , E. A. G. and Chapin , E S . 2006 . Permafrost and the Global Carbon Budget . Science 312 , 1612 – 1613 .  

comments powered by Disqus