Start Submission Become a Reviewer

Reading: Role of terrestrial ecosystems in determining CO2 stabilization and recovery behaviour

Download

A- A+
Alt. Display

Original Research Papers

Role of terrestrial ecosystems in determining CO2 stabilization and recovery behaviour

Authors:

Chris Jones ,

Met Office Hadley Centre, Exeter EX1 3PB, GB
X close

Spencer Liddicoat,

Met Office Hadley Centre, Exeter EX1 3PB, GB
X close

Jason Lowe

Met Office Hadley Centre (Reading Unit), Department of Meteorology, University of Reading, Reading RG6 6BB, GB
X close

Abstract

Terrestrial ecosystems are sensitive to climate and can also influence it through both biophysical and biogeochemical feedbacks. Natural carbon uptake by ecosystems will control future evolution of CO2 and climate, but the ecosystems themselves may be committed to long-term changes. Here we use a coupled climate-carbon cycle GCM with dynamic vegetation to investigate the policy-relevance of these feedbacks in several idealized scenarios. Our results show that the natural carbon cycle in the ocean and on land controls the recovery of atmospheric CO2 following emissions reductions at three action points during the 21st century. Initial rates of recovery are similar but for different reasons. Ocean carbon uptake exceeds terrestrial uptake, with higher CO2 levels leading to increased ocean uptake whereas on land greater climate change at higher CO2 leads to decreased carbon storage. There are long-term committed changes to terrestrial ecosystems which vary in sign regionally and create a complex dynamic response of terrestrial carbon storage as it slowly approaches a new steady state. Neither stabilization nor CO2 recovery allows ecosystems to recover back to their initial state and the ecosystems continue to respond for decades or even centuries following emissions reductions. These long-term committed changes, in addition to realized, transient changes, must be considered when defining dangerous climate change and identifying emission-pathways to avoid it.

How to Cite: Jones, C., Liddicoat, S. and Lowe, J., 2010. Role of terrestrial ecosystems in determining CO2 stabilization and recovery behaviour. Tellus B: Chemical and Physical Meteorology, 62(5), pp.682–699. DOI: http://doi.org/10.1111/j.1600-0889.2010.00490.x
  Published on 01 Jan 2010
 Accepted on 29 Jun 2010            Submitted on 22 Dec 2009

References

  1. Atkin , O. K. , Atkinson , L. J. , Fisher , R. A. , Campbell , C. D. , Zaragoza-Castells , J. and co-authors . 2008 . Using temperature-dependent changes in leaf scaling relationships to quantitatively account for ther-mal acclimation of respiration in a coupled global climate-vegetation model. Glob. Change Biol . 14 , 2709 - 2726 . doi: https://doi.org/10.1111/j.1365-2486.2008.01664.x .  

  2. Betts , R. A . 2000 . Offset of the potential carbon sink from boreal foresta-tion by decreases in surface albedo . Nature 408 , 187 – 190 .  

  3. Betts , R. A. , Cox , P. M. , Collins , M. , Harris , P. , Huntingford , C. and co-authors . 2004 . The role of ecosystem-atmosphere interactions in simulated Amazonian precipitation decrease and forest die-back under global climate warming. Theor. AppL Climatol . 78 , 157 - 175 .  

  4. Cadule , P. , Friedlingstein , P. , Bopp , L. , Sitch , S. , Jones , C. D. and co-authors . 2010 . Benchmarking coupled climate-carbon models against long-term atmospheric CO2 measurements. Global Biogeochem. Cy-cles 24 , GB2016 , doi: https://doi.org/10.1029/2009GB003556 .  

  5. Cramer , W. , Bondeau , A. , Woodward , E I. , Prentice , I. C. , Betts , R. A. and co-authors . 2001 . Global response of terrestrial ecosys-tem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change Biol . 7 , 357 - 373 .  

  6. Cox , P.M . 2001 . Description of the TRIFF1D dynamic global vegetation model . Technical Note 24 , Hadley Centre , Met Office .  

  7. Cox , P. M. , Huntingford , C. and Harding , R. J . 1998 . A canopy con-ductance and photosynthesis model for use in a GCM land surface scheme . J. HydroL 212/213 , 79 – 94 .  

  8. Cox , P. M. , Betts , R. A. , Jones , C. D ., Spall, S. A. and Totterdell , I. J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408 , 184 - 187 .  

  9. Cox P. M. , Betts , R. A. , Collins , M. , Harris , P. P. , Huntingford , C. and co-authors . 2004 . Amazonian forest dieback under climate-carbon cycle projections for the 21st Century. Theor. AppL Climatol . 78 137 - 156 .  

  10. Cox , P. M. , Harris , P. P. , Huntingford , C. , Betts , R. A. , Collins , M. and co-authors . 2008 . Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453 , 212 - 216 .  

  11. Crucifix , M. , Betts , R. A. and Hewitt , C. D . 2005 . Pre-industrial-potential and Last Glacial Maximum global vegetation simulated with a cou-pled climate-biosphere model: diagnosis of bioclimatic relationships . Global Planet. Change 45 , 295 – 312 .  

  12. Davidson , E. and Janssens , I . 2006 . Temperature sensitivity of soil car-bon decomposition and feedbacks to climate change . Nature 440 , 165 – 173 .  

  13. Denman , K. L. , Brasseur , G. , Chidthaisong , A. , Ciais , P. , Cox , P.M. and co-authors . 2007 . Couplings Between Changes in the Climate System and Biogeochemistry. In: Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press , Cambridge, UK and New York, USA .  

  14. Essery , R. L H. , Best , M. J. , Betts , R. A. , Cox , P. M. and Taylor , C. M. 2003. Explicit representation of subgrid heterogeneity in a GCM land-surface scheme. J. Hydrometeorol . 43 , 530 - 543 .  

  15. Foley , J. A. , Kutzbach , J. E. , Coe , M. T. and Levis , S. 1994. Feedbacks between climate and boreal forests during the Holocene epoch. Nature 371 , 52 - 54 .  

  16. Friedlingstein , P. , Cox , P. , Betts , R. , Bopp , L. , von Bloh , W. and co-authors . 2006 . Climate-carbon cycle feedback analysis, results from the C4M11) model intercomparison. J. Climate 19 ( 14 ), 3337 - 3353 , doi: https://doi.org/10.1175/JCLI3800.1 .  

  17. Gajewski , K . 2008 . The Global Pollen Database in biogeographi-cal and palaeoclimatic studies . Prog. Phys. Geogr . 32 , 379 – 402 , doi: https://doi.org/10.1177/0309133308096029 .  

  18. Good , P. , Lowe , J. A. , Collins , M. and Moufouma-Okia , W. 2008. An objective tropical Atlantic sea surface temperature gradient index for studies of south Amazon dry-season climate variability and change . Phil. Trans. R. Soc. B , 363 , 1761– 1766 .  

  19. Gordon , C. , Cooper , C. , Senior , C. A. , Banks , H. , Gregory , J. M. and co-authors . 2000 . The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dyn . 16 , 147 - 168 .  

  20. Gregory J. M. , Jones , C. D. , Cadule , P. and Friedlingstein , P. 2009. Quantifying carbon-cycle feedbacks. J. Climate 22 , 5232 - 5250 doi: https://doi.org/10.1175/2009JCL12949.1 .  

  21. Hare B. and Meinshausen M . 2006 . How much warming are we commit-ted to and how much can be avoided? Climatic Change 75 , 111 – 149 .  

  22. Harris , P. P. , Huntingford , C. and Cox , P . 2008 . Amazon basin climate under global warming: the role of the sea surface temperature . Phil. Trans. R. Soc. B 363 , 1753 – 1759 .  

  23. Harsch , M. A. , Hulme , P. E. , McGlone , M. S. and Duncan , R . P. 2009 . Are treelines advancing? A global meta-analysis of treeline response to climate warming. EcoL Lett.s 12 , 1040 - 1049 , doi: https://doi.org/10.1111/j.1461-0248.2009.01355.x .  

  24. Harrison , R. G. , Jones , C. D. and Hughes , J. K. 2008. Competing roles of rising CO2 and climate change in the contemporary European carbon balance. Biogeosciences 5 , 1 - 10  

  25. House , J. , Huntingford , C. , Knorr , W. , Cornell , S. E. , Cox , P. M. and co-authors . 2008 . What do recent advances in quantifying climate and carbon cycle uncertainties mean for climate policy? Environ. Res. Lett . 3 , 044002 , doi: https://doi.org/10.1088/1748-9326/3/4/044002 .  

  26. Jones , C. and Cox, P. 2001. Constraints on the temperature sen-sitivity of global soil respiration from the observed interarmual variability in atmospheric CO2. Atmos. Sci. Lett . 2 , 166 - 172 , doi: https://doi.org/10.1006/asle.2000.0041 .  

  27. Jones , C D. , Cox , P. M. and Huntingford , C. 2006. Impact of Climate-Carbon Cycle Feedbacks on Emission Scenarios to Achieve Stabili-sation. In: Avoiding Dangerous Climate Change, Chapter 34 (eds H. J. Schellnhuber , W. Cramer , N. Nakicenovic , T. Wigley and G. Yohe ). Cambridge University Press , Cambridge, UK .  

  28. Jones , C. D. and Falloon , P. M . 2009 . Sources of uncertainty in global modelling of future soil organic carbon storage. In: Uncertainties in Environmental Modelling and Consequences for Policy Making (eds P. Baveye , J. Mysiak and M. Laba ).NATO Science for Peace and Security Series, Springer, Heidelberg, Germany, 34.  

  29. Jones , C D. , Lowe , J. A. , Liddicoat , S. K. and Betts , R. A. 2009. Committed terrestrial ecosystem changes due to climate change. Nat. Geosci . 2 , 484 - 487 , doi: https://doi.org/10.1038/NGE0555 .  

  30. Jones , C. D. and Lowe, J. A. 2010. Committed ecosystem changes. In: Climate Change: Global Risks, Challenges and Decisions (eds Katherine Richardson and Will Steffen ). Cambridge University Press , in press .  

  31. Kurz , W. A. , Dymond , C. C. , Stinson , G. , Rampley , G J. , Neilson, E. T. and co-authors . 2008a . Mountain pine beetle and forest carbon feedback to climate change. Nature 452 , 987 - 990 .  

  32. Kurz , W. A. , Stinson , G. and Rampley , G . 2008b . Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Phil. Trans. R. Soc. B 363 , 2259 – 2268 .  

  33. Lenton , T. M. , Held , H. , Kriegler , E. , Hall , J. W. , Lucht , W. and co-authors . 2008 . Tipping elements in the Earth's climate system. Proc. Natl. Acad. Sci. U.S.A . 105 , 1786 .  

  34. Lewis , S. L. , Lopez-Gonzalez , G. , Sonke , B. , Affum-Baffoe , K. , Baker , T. R. and co-authors . 2009 . Increasing carbon storage in intact African tropical forests. Nature 457 , 1003 - 1006 , doi: https://doi.org/10.1038/nature07771.  

  35. Loveys , B. R. , Atkinson , L. J. , Sherlock , D. J. , Roverts , R. L. , Fitter , A. H. and co-authors . 2003 . Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast-and slow-growing plant species. Glob. Change Biol . 9 , 895 - 910 .  

  36. Lowe , J. A. , Huntingford , C. , Raper , S. C. B. , Jones , C. D. , Liddicoat , S. K. and co-authors . 2009 . How difficult is it to recover from dan-gerous levels of global warming? Environ. Res. Lett . 4 ( 014012 ), 9, doi: https://doi.org/10.1088/1748-9326/4/1/014012 .  

  37. Macdonald , G. M. , Kremenetski , K. V. and Beilman , D. W . 2008 . Cli-mate change and the northern Russioan treeline zone . Phil. Trans. R. Soc. B 363 , 2283 – 2299 .  

  38. Matthews , H. D . 2005 . Decrease of emissions required to stabilize atmo-spheric CO2 due to positive carbon cycle-climate feedbacks. Geophys. Res. Lett . 32 , doi: https://doi.org/10.1029/2005GL023435 .  

  39. Matthews , H. D. , Eby , M. , Weaver , A. J. and Hawkins , B. J . 2005 . Primary productivity control of the simulated climate-carbon cycle feedback. Geophys. Res. Lett . 32 , doi: https://doi.org/10.1029/2005GL022941 .  

  40. Matthews H. D. and Caldeira , K . 2008 . Stabilizing climate re-quires near-zero emissions . Geophys. Res. Lett . 35 , L04705 , doi: https://doi.org/10.1029/2007GL032388 .  

  41. Meehl , G. A. , Stocker , T. E , Collins , W. D. , Friedlingstein , P. , Gaye , A. T. and co-authors . 2007 . Global climate projections Climate Change 2007: the physical science basis. In: Contribution of Working Group Ito the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon , D. Qin , M. Manning , Z. Chen , M. Marquis and co-authors .). Cambridge University Press , Cambridge, UK and New York, USA .  

  42. Meehl , G. A. , Washington , W. M. , Collins , W. D. , Arblaster , J. M. , Hu , A. and co-authors . 2005 . How much more global warming and sea level rise? Science 307 , 1769– 1772 .  

  43. Miyama T. and Kawamiya , M . 2009 . Estimating allowable car-bon emission for CO2 concentration stabilization using a GCM-based Earth system model . Geophys. Res. Lett . 36 , L19709 , doi: https://doi.org/10.1029/2009GL039678 .  

  44. Moorcroft , P. R. , Hurtt , G. C. and Pacala , S. W . 2001 . A method for scaling vegetation dynamics: the ecosystem demography model (ED) . EcoL Monogr 71 , 557 – 586 .  

  45. Nakiéenovié , N. , Alcamo , J. , Davis , G. , de Vries , B. , Fenhann , J. and co-authors . 2000 . Special Report on Emissions Scenarios . Cambridge University Press , Cambridge, UK , 599 .  

  46. Norby , R. J. , DeLucia , E. H. , Gielenm , B. , Calfapietra , C. , Giardina , C. P. and co-authors . 2005 . Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. U. S. A . 102 , 18052 - 18056 .  

  47. Palmer , J. R. and Totterdell , I. J. 2001. Production and export in a global ocean ecosystem model. Deep Sea Res . 48 , 1169 - 1198 .  

  48. Phillips, O. L. , Aragdo, L. E. O. C. , Lewis , S. L. , Fisher , J. B. and Lloyd , J. 2009. Drought sensitivity of the Amazon rainforest. Science 323 , 1344 - 1347 , doi: https://doi.org/10.1126/science.1164033 .  

  49. Piao , S. , Ciais , P. , Friedlingstein , P. , Peylin , P. , Reichstein , M. and co-authors . 2008 . Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451 , 49 - 52 , doi: https://doi.org/10.1038/nature06444 .  

  50. Plattner , G.-K . 2009 . Terrestrial ecosystem inertia . Nat. Geosci . 2 , 467 – 468 .  

  51. Raddatz , T J. , Reick , C. H. , Knorr , W. , Kattge , J. , Roeckner , E. and co-authors . 2007 . Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty first century? Clim. Dyn . 29 , 565 - 574 , doi: https://doi.org/10.1007/s00382-007-0247-8 .  

  52. Randerson , J. T. , Hoffman, E M. , Thornton , P. E. , Mahowald , N. M. , Lindsay , K. and co-authors . 2009 . Systematic assessment of terrestrial biogeochemistry in coupled climate-carbon models. Glob. Change Biol . 15 , 2462 - 2484 .  

  53. Scholze , M. , Knorr , W. , Amell , N. W. and Prentice , I. C . 2006 . A climate-change risk analysis for world ecosystems . Proc. Natl. Acad. Sci. U.S.A . 103 , 13116 – 13120 .  

  54. Sitch , S. , Huntingford , C. , Gedney , N. , Levy , P. E. , Lomas , M. and co-authors . 2008 . Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using 5 Dy-namic Global Vegetation Models (DGVMs). Glob. Change Biol . 14 , 2015 - 2039 , doi: https://doi.org/10.1111/j.1365-2486.2008.01626.x .  

  55. Smith , T. M. and Shugart , H. H . 1993 . The transient response of ter-restrial carbon storage to a perturbed climate . Nature 361 , 523 – 526 .  

  56. Thornton , P. E. , Doney , S. C. , Lindsay , K. , Moore , J. K. , Mahowald , N. and co-authors . 2009 . Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences 6 , 2099 - 2120 .  

  57. Wang , Y. -P. and Houlton, B. Z. 2009. Nitrogen constraints on terrestrial carbon uptake: implications for the global carbon-climate feedback. Geophys. Res. Lett . 36 , L24403 , doi: https://doi.org/10.1029/2009GL041009 .  

  58. Wigley , T. M. L . 1995 . Global mean-temperature and sea level conse-quences of greenhouse gas concentration stabilisation . Geophys. Res. Lett . 22 , 45 – 48 .  

comments powered by Disqus