Start Submission Become a Reviewer

Reading: Simulation studies for a space-based CO2 lidar mission

Download

A- A+
Alt. Display

Original Research Papers

Simulation studies for a space-based CO2 lidar mission

Authors:

S. R. Kawa ,

NASA Goddard Space Flight Center, Greenbelt, MD, US
X close

J. Mao,

Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, MD, US
X close

J. B. Abshire,

NASA Goddard Space Flight Center, Greenbelt, MD, US
X close

G. J. Collatz,

NASA Goddard Space Flight Center, Greenbelt, MD, US
X close

X. Sun,

NASA Goddard Space Flight Center, Greenbelt, MD, US
X close

C. J. Weaver

Goddard Earth Sciences and Technology Center, University of Maryland Baltimore County, Baltimore, MD, US
X close

Abstract

We report results of initial space mission simulation studies for a laser-based, atmospheric CO2 sounder, which are based on real-time carbon cycle process modelling and data analysis. The mission concept corresponds to the Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) recommended by the US National Academy of Sciences’ Decadal Survey. As a pre-requisite for meaningful quantitative evaluation, we employ a CO2 model that has representative spatial and temporal gradients across a wide range of scales. In addition, a relatively complete description of the atmospheric and surface state is obtained from meteorological data assimilation and satellite measurements. We use radiative transfer calculations, an instrument model with representative errors and a simple retrieval approach to quantify errors in ‘measured’ CO2 distributions, which are a function of mission and instrument design specifications along with the atmospheric/surface state. Uncertainty estimates based on the current instrument design point indicate that a CO2 laser sounder can provide data consistent with ASCENDS requirements and will significantly enhance our ability to address carbon cycle science questions. Test of a dawn/dusk orbit deployment, however, shows that diurnal differences in CO2 column abundance, indicative of plant photosynthesis and respiration fluxes, will be difficult to detect.

How to Cite: Kawa, S.R., Mao, J., Abshire, J.B., Collatz, G.J., Sun, X. and Weaver, C.J., 2010. Simulation studies for a space-based CO2 lidar mission. Tellus B: Chemical and Physical Meteorology, 62(5), pp.759–769. DOI: http://doi.org/10.1111/j.1600-0889.2010.00486.x
3
Views
1
Downloads
  Published on 01 Jan 2010
 Accepted on 25 Jun 2010            Submitted on 22 Dec 2009

References

  1. Abshire , J. B. , Riris , H. , Sun , X. , Krainak , M. A. , Kawa , S. R. and co-authors . 2007 . Lidar approach for measuring the CO2 concentrations in the troposphere from space. In: Proceedings of 2007 Conference on Lasers and Electro-Optics (CLEO-2007 , Baltimore, MD , Paper CThII5, ISBN: 978-1-55752-834-6 .  

  2. Abshire , J. B. , Riris , H. , Hasselbrack , B. , Allan , G. , Weaver , C. and co-authors . 2009 . Airborne measurements of CO2 column absorption using a pulsed wavelength-scanned laser sounder instrument. In: Proceedings of 2009 Conference on Lasers and Electro-Optics (CLEO2009 , Baltimore, MD , Paper CFU-2, ISBN: 978-1-55752-869-8 .  

  3. Amediek , A. , Fix , A. , Ehret , G. , Caron , J. and Durand , Y . 2009 . Air-borne lidar reflectance measurements at 1.57 itm in support of the  

  4. A-SCOPE mission for atmospheric CO2. Atmos. Meas. Tech. Dis-cuss . 2 , 1487 - 1536 .  

  5. Bian , H. , Kawa , S. R. , Chin , M. , Pawson , S. , Zhu , Z. and co-authors . 2006 . A test of sensitivity to convective transport in a global atmo-spheric CO2 simulation. Tellus 58B , 463 - 475 .  

  6. Baker , D. E , Law , R. M. , Gurney , K. R. , Rayner , P. , Peylin , P. and co-authors . 2006 . TransCom 3 inversion intercomparison: impact of transport model errors on the interannual variability of regional CO2 fluxes, 1988 - 2003 . Global Biogeochem. Cycles 20 , GB1002 , doi: https://doi.org/10.1029/2004GB002439 .  

  7. Bousquet , P. , Peylin , P. , Ciais , P. , Le Quere , C. , Friedlingstein , P. and co-authors . 2000 . Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290 , 1342 - 1346 .  

  8. Chevallier , E , Maksyutov , S. , Bousquet , P. , Breon , E-M. , Saito , R. and co-authors . 2009 . On the accuracy of the CO2 surface fluxes to be estimated from the GOSAT observations. Geophys. Res. Lett . 36 , L19807 , doi: https://doi.org/10.1029/2009GL040108 .  

  9. Clough , S.A. and Iacono , M. J . 1995 . Line-by-line calculations of atmo-spheric fluxes and cooling rates. 2: Applications to carbon dioxide, ozone, methane, nitrous oxide, and the halocarbons . J. Geophys. Res . 100 , 16519 – 16535 .  

  10. Clough , S.A. , Iacono , M. J. and Moncet , J. L . 1992 . Line-by-line cal-culation of atmospheric fluxes and cooling rates: application to water vapor . J. Geophys. Res . 97 , 15761 – 15785 .  

  11. Corbin , K. D. , Denning , A. S. , Lu , L. , Wang , J.-W. and Baker , I. T . 2008 . Possible representation errors in inversions of satellite CO2 retrievals . J. Geophys. Res . 113 , D02301 , doi: https://doi.org/10.1029/2007JDO08716 .  

  12. Cox , P. M. , Betts , R. A. , Jones , C. D. , Spall , S. A. and Totterdel , I. J . 2000 . Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model . Nature 408 , 184 – 187 .  

  13. Crisp , D. , Atlas , R. M. , Breon , E-M. , Brown , L. R. , Burrows , J. P. and co-authors . 2004 . The orbiting carbon observatory (OCO) mission. Adv. Space Res . 34 ( 4 ), 700 - 709 .  

  14. Disney , M. I. , Lewis , P. E. , Bouvet , M. , Prieto-Blanco , A. and Han-cock , S . 2009 . Quantifying surface reflectivity for spacebome lidar via two independent methods . IEEE Transact. Geosci. Remote Sens . 47 , 3262 – 3271 .  

  15. Dobbs , M. , Gypson , M. , Neff , B. , Pruit , J. , Zimmermann , J. and co-authors . 2002 . Validation of design for space based Tunable Diode Laser Absorption Spectroscopy payload. Proc. SPIE 4817 , 123 - 128 .  

  16. Dufour , E. and Breon , E-M . 2003 . Spacebome estimate of atmospheric CO2 column by use of the differential absorption method: error anal-ysis . AppL Opt . 42 , 3595 – 3609 .  

  17. Dufresne , J.-L. , Friedlingstein , P. , Berthelot , M. , Bopp , L. , Ciais , P. and co-authors . 2002 . On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett . 29 , 1405 , doi: https://doi.org/10.1029/2001GL013777 .  

  18. Ehret , G. , Kiemle , C. , Wirth , M. , Amediek , A. , Fix , A. and co-authors . 2008 . Space-borne remote sensing of CO2, CH4, and N20 by inte-grated path differential absorption lidar: a sensitivity analysis. AppL Phys. B 90 , 593 - 608 , doi: https://doi.org/10.1007/s00340-007-2892-3 .  

  19. Friedlingstein , P. , Cox , P. , Betts , R. , Bopp , L. , von Bloh , W. and co-authors . 2006 . Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J. Clim . 19 , 3337 - 3353 .  

  20. Gibert , E , Flamant , P. H. , Bruneau , D. and Loth , C . 2006 . Two-micrometer heterodyne differential absorption lidar measurements of the atmospheric CO2 mixing ratio in the boundary layer . AppL Opt . 45 , 4448 – 4458 .  

  21. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. and co-authors . 2002 . Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415 , 626 - 630 .  

  22. Intergovernmental Panel on Climate Change (MCC), Climate Change . 2007 . The physical science basis. In: Contribution of Working Group Ito the Fourth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press , Cambridge, UK and New York, NY, USA , 9996 .  

  23. Kameyama , S. , Imaki , M. , Hirano , Y. , Ueno , S. , Kawakami , S. and co-authors . 2009 . Development of 1.6 mum continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing. Opt. Lett . 34 , 1513 - 1515 .  

  24. Kawa , S. R. , Erickson , D. J. BI , Pawson , S. and Zhu , Z . 2004 . Global CO2 transport simulations using meteorological data from the NASA data assimilation system . J. Geophys. Res . 109 , D18312 , doi: https://doi.org/10.1029/2004JD004554 .  

  25. Koch , G. J. , Barnes , B. W. , Petros , M. , Beyon , J. Y ., Amzajerdian, E and co-authors . 2004 . Coherent differential absorption lidar measurements of CO2. AppL Opt . 43 , 5092 - 5099 .  

  26. Lancaster , R. S. , Spinhime , J. D. and Palm , S. P . 2005 . Laser pulse re-flectance of the ocean surface from the GLAS satellite lidar . Geophys. Res. Lett . 32 , L22510 , doi: https://doi.org/10.1029/2005GL023732 .  

  27. Langenfelds , R. L. , Francey , R. J. , Pak , B. C. , Steele , L. P. , Lloyd , J. and co-authors . 2002 . Interarmual growth rate variations of atmospheric CO2 and its delta C-13, H-2, CH4, and CO between 1992 and 1999 linked to biomass burning. Global Biogeochem. Cycles 16 ( 3 ), Art. No. 1048, doi: https://doi.org/10.1029/2001GB001466 .  

  28. Law , R. M. , Peters , W. , Rodenbeck , C. , Aulagnier , C. , Baker , I. and co-authors . 2008 . TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002. Global Biogeochem. Cycles 22 , GB3009 , doi: https://doi.org/10.1029/2007GB003050 .  

  29. Mao , J. and Kawa , S. R . 2004 . Sensitivity studies for space-based mea-surement of atmospheric total column carbon dioxide using reflected sunlight . AppL Opt . 43 , 914-927 .  

  30. Menzies , R. T. and Tratt , D. M . 2003 . Differential laser absorption spec-trometry for global profiling of tropospheric carbon dioxide: selection of optimum sounding frequencies for high-precision measurements . AppL Opt . 42 , 6569 – 6577 .  

  31. Miller , C. E. , Crisp , D. , DeCola , P. L. , Olsen , S. C. , Randerson , J. T. and co-authors . 2007 . Precision requirements for space-based X CO2 data. J. Geophys. Res . 112 , D10314 , doi: https://doi.org/10.1029/2006JD007659 .  

  32. Nemani , R. R. , Keeling , C. D. , Hashimoto , H. , Jolly , W. M. , Piper , S. C. and co-authors . 2003 . Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300 , 1560 - 1563 , doi: https://doi.org/10.1126/science.1082750 .  

  33. NRC . 2007 . Earth Science and Applications from Space: National Im-peratives for the Next Decade and Beyond . The National Academies Press, Washington , DC .  

  34. Olsen , S. C. and Randerson , J. T . 2004 . Differences between surface and column atmospheric CO2 and implications for carbon cycle research . J. Geophys. Res . 109 , D02301 , doi: https://doi.org/10.1029/2003JD003968 .  

  35. Parazoo , N. C. , Denning , A. S. , Kawa , S. R. , Corbin , K. D. , Lokupitiya , R. S. and co-authors . 2008 . Mechanisms for synoptic variations of atmospheric CO2 in North America, South America and Europe. Atmos. Chem. Phys . 8 , 7239 - 7254 .  

  36. Rayner , P. J. and O'Brien , D. M . 2001 . The utility of remotely sensed CO2 concentration data in surface source inversions . Geophys. Res. Lett . 28 , 175 – 178 .  

  37. Rayner , P. J. , Law , R. M. , O'Brien , D. M. , Butler , T. M. and Dilley , A. C . 2002 . Global observations of the carbon budget. 3. Initial as-sessment of the impact of satellite orbit, scan geometry, and cloud on measuring CO2 from space. J. Geophys. Res . 107 ( 1 )21), 4557, doi: https://doi.org/10.1029/2001JDO00618 .  

  38. Rothman , L. S. , Gordon , I. E. , Barbe , A. , Benner , D. C. , Bernath , P . E and co-authors . 2009 . The HITRAN 2008 molecular spectroscopic database. J. Quantit. Spectrosc. Radiat. Transfer 110 , 533 - 572 , ISSN 0022-4073, doi: https://doi.org/10.1016/j.jqsrt.2009.02.013 .  

  39. Schaaf , C. B. , Gao , E , Strahler , A. H. , Lucht , W. , Li , X. and co-authors . 2002 . First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens. Environ . 83 , 135 - 148 .  

  40. SOCCR . 2007 . The First State of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and Implications for the Global Carbon Cycle, Synthesis and Assessment Product 2.2. Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research , Asheville, NC .  

  41. Stephen , M. A. , Mao , J. , Abshire , J. B. , Sun , X. , Kawa , S. R. and co-authors . 2008 . Oxygen spectroscopy laser sounding instrument for remote sensing of atmospheric pressure. In: Proceedings of the 2008 IEEE Aerospace Conference , Big Sky, MT, Volumes 1-9, 1541 - 1546 .  

  42. Stephens , B. B. , Gurney , K. R. , Tans , P. P. , Sweeney , C. , Peters , W. and co-authors . 2007 . Weak northern and strong tropical land car-bon uptake from vertical profiles of atmospheric CO2 . Science 316 , 1732– 1735 .  

  43. Tans , P. P. , Fung , I. Y. and Takahashi , T . 1990 . Observational constraints on the global atmospheric CO2 budget . Science 247 , 1431 – 1438 .  

  44. Tucker C J. , Pinzon , J. E. , Brown , M. E. , Slayback , D. A. , Pak , E. W. and co-authors . 2005 . An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens . 26 , 4485 - 4498 .  

  45. van Der Werf , G. R. , Randerson , J. T. , Giglio , L. , Collatz , G. J. and Kasibhatla , P. S. 2006. Interannual variability in global biomass burn-ing emission from 1997 to 2004. Atmos. Chem. Phys . 6 , 3423 - 3441 . SRef-ID: 1680-7324/acp/2006-6-3423.  

  46. Warren , S. G . 1982 . Optical properties of snow . Rev. Geophys . 20 ( 1 ), 67 – 89 .  

  47. Warren , S. G . 1984 . Optical constants of ice from the ultraviolet to the microwave . AppL Opt . 23 , 1206 – 1225 .  

  48. Winker , D. M. , Hunt , W. H. and McGill , M . J. 2007 . Initial perfor-mance assessment of CALIOP. Geophys. Res. Lett . 34 , L19803 , doi: https://doi.org/10.1029/2007GL030135 .  

  49. Yokota , T. , Oguma , H. , Morino , I. , Higurashi , A. , Aoki , T. and co-authors . 2004 . Test measurements by a BBM of the nadir-looking SWIR FTS aboard GOSAT to monitor CO2 column density from space. Proc. SPIE 5652 , 182 , doi: https://doi.org/10.1117/12.578497 .  

comments powered by Disqus