Start Submission Become a Reviewer

Reading: Updated estimate of carbon balance on Russian territory

Download

A- A+
Alt. Display

Original Research Papers

Updated estimate of carbon balance on Russian territory

Authors:

I.N. Kurganova ,

Institute of Physicochemical and Biological Problems in Soil Science, RAS, Pushchino, Moscow region 142290, RU
X close

V.N. Kudeyarov,

Institute of Physicochemical and Biological Problems in Soil Science, RAS, Pushchino, Moscow region 142290, RU
X close

V.O. Lopes de Gerenyu

Institute of Physicochemical and Biological Problems in Soil Science, RAS, Pushchino, Moscow region 142290, RU
X close

Abstract

The land use system in Russia changed considerably after 1990: 30.2 million ha of croplands were abandoned. Based on the own field investigations that were carried out in abandoned lands of different age (Luvic Phaeozems, deciduous forest zone; Moscow region, 54°50'N, 37°37'E), it has been shown that after 4.5 yr of abandonment, the former croplands acted as a stable sink of CO2. The net ecosystem production (NEP) in the post-agrogenic ecosystems averaged 245 ± 73g C m-2 yr-1 for the first 15 yr after land use change that corresponds to an estimated 74 ± 22 Tg C yr-1 for the total area of abandoned lands in Russian Federation. Currently, the Russian territory acts as an absolute sink of atmospheric CO2 at a rate about 0.90 Pg C yr-1. Using three different approaches, it was demonstrated that after 1990, the carbon sequestration in Russian soils (0.20 cm layer) has averaged 34 ± 2.2 Tg C yr-1. This soil C forms net biome production (NBP) where carbon lifetime is much longer than in ‘Kyoto forests’. Thus, the post-agrogenic ecosystems in Russia provide with the additional CO2 sink in NEP and NBP that could annually compensate about 25% of the current fossil fuel emissions in the Russian Federation.

How to Cite: Kurganova, I.N., Kudeyarov, V.N. and Lopes de Gerenyu, V.O., 2010. Updated estimate of carbon balance on Russian territory. Tellus B: Chemical and Physical Meteorology, 62(5), pp.497–505. DOI: http://doi.org/10.1111/j.1600-0889.2010.00467.x
3
Views
1
Downloads
  Published on 01 Jan 2010
 Accepted on 11 Jun 2010            Submitted on 30 Nov 2009

References

  1. Batjes , N. H . 1996 . Total carbon and nitrogen in the soils of the word. Eur. J. Soil Sci . 47 , 151 – 163 .  

  2. Belelli Marchesini , L . 2007 . Analyses of the carbon cycle of steppe and old field ecosystems of Central Asia . PhD thesis. University of Tuscia, Viterbo, Italy, 227. Available at: http://www.unitus.it.  

  3. Belelli Marchesini , L. , Papale , D. , Reichstein , M. , Vuichard , N. , Tchebakova , N. and co-authors . 2007 . Carbon balance assessment of a natural steppe of southern Siberia by multiple constraint approach. Biogeosci. Discussions 4 , 165 - 208 .  

  4. Federal Agency of Real Estate Cadastre: State and use of lands in Russian Federation in 2005 . 2006 . National Report, Moscow, 202 (in Russian).  

  5. Federal State Statistics Service: Russia in figures . 2009 . Moscow, 525. Available at: http://www.gks.ru/bgd/regl/b08_12/IssWWW.exe/ stg/d01/15-01.htm.  

  6. Fridland , V. M. ( ed.) 1988. Soil map of the Russian Soviet Federative So-cialist Republic at scale 1:2.5M. (all Union Academy of Agricultural Sciences). Government administration on geodesy and cartography. (GUGK), USSR. 16.  

  7. Gebhart , D. L. , Johnson , H. B. , Mayeux , H. S. and Polley , H. W . 1994 . The SRP increases soil organic carbon. J. Soil Water Conserv . 49 , 48 – 492 .  

  8. Guo , L. B. and Gifford , R. M . 2002 . Soil carbon stock and land use change: a meta analysis . Global Change Biol . 8 , 345 – 360 .  

  9. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker D. and co-authors . 2003 . TransCom 3 CO2 invention intercomparision: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus 55B , 555 - 579 .  

  10. Houghton , R. A . 2003 . Revised estimates of annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000 . Tellus 55B , 378 – 390 .  

  11. IPCC . 2000 . Special Report on Land Use, Land Use Change, and Forestry Cambridge . Cambridge University Press , UK .  

  12. Ito , A . 2003 . A global scale simulation of the CO2 exchange be-tween the atmosphere and the terrestrial biosphere with a mechanistic model including stable carbon isotopes, 1953-1999 . Tellus 55B , 596 – 612 .  

  13. Kern , J. S. and Johnson , M. G. 1993. Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci. Soc. Am. J . 53 , 200 - 210 .  

  14. Kudeyarov , V. N . 2000 . The soil contribution to the balance of atmo-spheric CO2 on the Russian territory. Doklady Academii Nauk 375(2) , 275 - 277 ( in Russian ).  

  15. Kudeyarov , V. N . 2005 . The role of soils in the carbon cycle . Eurasian Soil Sci . 8 , 808 – 815 .  

  16. Kudeyarov , V. N. and Kurganova , I. N . 1998 . Carbon dioxide emission and net primary production of Russian terrestrial ecosystems . Biol. FertiL Soils 27 , 246 – 250 .  

  17. Kudeyarov , V. N. , Zavarzin , G. A. , Blagodatsky , S. A. , Borisov , A. V. , Voronin , P. U. and co-authors . 2007 . Pools and Fluxes of Carbon in Terrestrial Ecosystems of Russia (ed. G. A. Zavarzin ). Nauka, Moscow, 316. (in Russian).  

  18. Kurganova , I. N . 2003 . Carbon dioxide emission from soils of Russian terrestrial ecosystems. Interim Report, IR-02-070 . HASA, Laxenburg , Austria , 64 .  

  19. Kurganova , I. N. and LopesdeGerenyu, V. O. 2008. Assessment of changes in soil organic carbon storage in soils of Russia, 1990 - 2020 . Eurasian Soil Sci . Supplement 41(13 ), 1371 - 1377 .  

  20. Kurganova , I. N. and LopesdeGerenyu, V. O. 2009 . The stock of organic carbon in soils of the Russian Federation: updated estimation in connection with land use changes . Doklady Biol. Sci . 426 , 219 – 221 .  

  21. Kurganova , I. , Lopes de Gerenyu , V. , Rozanova , L. , Sapronov , D. , Myakshina , T. and co-authors . 2003 . Annual and seasonal CO2 fluxes from Russian southern taiga soils. Tellus 55B , 338 - 344 .  

  22. Kurganova , I. , Yermolaev , A. , Lopes de Gerenyu , V. , Larionova , A. , Kuzyakov , Y. and co-authors . 2007 . Carbon balance in soils of aban-doned lands in Moscow region. Eurasian Soil Sci . 40(1 ), 50 - 58 .  

  23. Kurganova , I. N. , Lopes de Gerenyu , V. O. , Myakshina , T. N. , Sapronov , D. V. , Lichko , V. I. and co-authors . 2008 . Changes in the carbon stocks of former croplands in Russia. Agric. Sci . 15(4 ), 10 - 15 .  

  24. Larionova , A. A. , Rozonova , L. N. , Yevdokimov , I. V. , Yermolayev , A. M. , Kurganova , I. N. and co-authors . 2003a . Land-use change and management effects on carbon sequestration in soils of Russia's South Taiga zone. Tellus 55B , 331 - 337 .  

  25. Larionova , A. A. , Yevdokimov , I. V. , Kurganova , I. N. , Sapronov , D. V. , Kumetsova , L. G. and co-authors . 2003b . Root respiration and its contribution to the CO2 emission from soil. Eurasian Soil Sci . 2 , 173 - 184 .  

  26. Lyuri , D I. , Goryachkin , S. V. , Karavaeva , N. A. , Nefedova , T. G. and Denisenko , Ye. A. 2008. Regularities of agricultural land withdrawal in Russia and in the world and processes of post-agrogenic develop-ment of abandoned lands. In: Agroecological Status and Prospects of Use of Lands of Russia Withdrawn from Active Agricultural Rotation (ed. A. L. Ivanov ). Dokuchaev Soil Science Institute, Moscow, 45-71 (in Russian).  

  27. Mikhailenko , B.Yu. and Bobkov, U. K. ( eds) 1988. Political and admin-istrative map of USSR, Scale 1:8M. Government administration on geodesy and cartography. Moscow, Russia.  

  28. Nilsson , S. , Shvidenko , A. , Stolbovoi , V. , Gluck , M. , Jonas , M. and co-authors . 2000 . Full carbon account for Russia. Interim Report IR-00-021 . HASA, Laxenburg , Austria , 180 .  

  29. Orlov , D. S . 1998 . Organic substances of Russian soils . Eurasian Soil Sci . 9 , 946 – 953 .  

  30. Paustian , K. , Cole , C. V. , Sauerbeck , D. and Sampson , N . 1998 . CO2 mitigation by agriculture: an overview. Clim. Change 40 , 135 - 162 .  

  31. Post , W. M. and Kwon , K. C. 2000. Soil carbon sequestration and land use change: processes and potential. Global Change Biol . 6 , 317 - 327 .  

  32. Poulton , P. R. , Pye , E. , Hargreaves , P. R. and Jenkinson , D. S. 2003. Accumulation of carbon and nitrogen by old arable land reverting to woodland . Global Change Biol . 9 , 942 – 955 .  

  33. Rojkov , V. A. , Wagner , V B. , Kogut , B. M. , Konyushkov , D. E. , Nilsson , S. and co-authors . 1996 . Soil Carbon estimates and Soil carbon map for Russisa. Working paper. HASA, Laxenburg, Austria, 44.  

  34. Romanovskaya, A. A. 2008. Carbon and nitrogen accumulation in abandoned lands of Russia. LZau Mokslo Darbai 80(33), 82-91 ( in Russian ).  

  35. Schlesinger , W. H . 2000 . Carbon sequestration in soils: some cautions amidst optimism . Agric., EcosysL Environ . 82 , 121 – 127 .  

  36. Shvidenko , A. , Schepachenko , D. , McCallum , I. , Kraxner, E , Nilsson , S. and co-authors . 2009 . Terrestrial ecosystems full carbon account for Russia: a reanalysis. In: Proceedings of 8th International CO2 Conference . Jena , Germany .  

  37. Silver , W. L. , Osterlag , R. and Lugo , A. E . 2000 . The potential for carbon sequestration through reforestation of abandoned tropical agricultural and pasture lands . Restor. EcoL 8 , 394 – 407 .  

  38. Smith , P . 2004 . Monitoring and verification of soil carbon changes under Article 3.4 of the Kyoto Protocol. Soil Use Manage . 20 , 264 - 270 .  

  39. Soussanna , J.E Pilegaard , K. , Ambus , P. , Berbigier , P. , Ceschia , E. and co-authors . 2004 . Annual greenhouse gas balance of European grasslands-first results from the GreenGrass Project. Book of the Proceeding of Conference “Greenhouse gas emission from Agriculturemitigation options and Strategies” . Leipzig , Germany , 25 - 30 .  

  40. Steffen , W. , Noble , J. , Canadell , J. , Apps , M. , Schulze, E-D. and co-authors . 1998 . The terrestrial carbon cycle; implication for the Kyoto protocol . Science 280 , 1393 – 1394 .  

  41. Stolbovoi , V . 2000 . Soils of Russia: Correlated with the Revised Legend of the FAO Soil Map of the World and World Reference Base for Soil Resources. International Institute for Applied System Analysis , Laxenburg , Austria , 113 .  

  42. Titlyanova , A. A. and Tesargova , M . 1991 . Regimes of Biological Cycle . Nauka, Novosibirsk, 150. (in Russian).  

  43. Vinogradov , M. E. , Romankevich , E. A. , Vetrov , A. A. and Vedemikov , B. I . 1999 . The carbon cycle in Arctic see. The Carbon Cycle on Russian Territory (eds N. P. Laverov and G. A. Zavarzin ). Moscow, 300-325 (in Russian).  

  44. Voronin , P.Yu. and Black, C. C. 2005. The importance and place of the photosynthetic carbon sequestration in the organic branch of its global cycle. Russ. J. Plant PhysioL 52(1 ), 169 - 77 .  

  45. Vuichard , N. , Ciais , P. , Belelli Marchesini , L. , Smith , P. and Valentini , R. 2008. Carbon sequestration due to the abandonment of agriculture in the former USSR since 1990. Glob. Biochem. Cycles 22 , GB4018 . doi: https://doi.org/10.1029/2008GB003212 .  

  46. West , T. O. and Post, W. M. 2002. Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis . Soil Sci. Soc. Am. J . 66 , 1930– 1946 .  

comments powered by Disqus