Start Submission Become a Reviewer

Reading: Observational quantification of a total aerosol indirect effect in the Arctic

Download

A- A+
Alt. Display

Original Research Papers

Observational quantification of a total aerosol indirect effect in the Arctic

Authors:

Dan Lubin ,

Scripps Institution of Oceanography, University of California San Diego, US
X close

Andrew M. Vogelmann

Brookhaven National Laboratory, US
X close

Abstract

We use 6 yr of multisensor radiometric data (1998–2003) from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program to provide an observational quantification of the short-wave aerosol first indirect effect in the Arctic. Combined with the previously determined long-wave indirect effect, the total (short-wave and long-wave) first indirect effect in the high Arctic is found to yield a transition from surface warming of +3 W m−2 during March to a cooling of –11 W m−2 duringMay, therefore altering the seasonal cycle of energy input to the Arctic Earth–atmosphere system. These data also reveal evidence of a first indirect effect that affects optically thinner clouds during summer, which may represent an additional negative climate feedback that responds to a warming Arctic Ocean with retreating sea ice.

How to Cite: Lubin, D. and Vogelmann, A.M., 2010. Observational quantification of a total aerosol indirect effect in the Arctic. Tellus B: Chemical and Physical Meteorology, 62(3), pp.181–189. DOI: http://doi.org/10.1111/j.1600-0889.2010.00460.x
  Published on 01 Jan 2010
 Accepted on 14 Apr 2010            Submitted on 2 Jul 2009

References

  1. Clothiaux , E. E. , Ackermann , T. P. , Mace , G. C. , Moran , K. P. , Marchand , R. T. and co-authors. 2000. Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteorol., 39, 645 – 665.  

  2. Delene , D. J. and Ogren , J. A . 2002 . Variability of aerosol optical prop-erties at four North American surface monitoring sites. J. Atmos. Sc i ., 59 , 1135 – 1150 .  

  3. Dong , X. and Mace , G. G . 2003 . Arctic stratus cloud properties and radiative forcing derived from ground-based data collected at Barrow, Alaska . J. Clim ., 16 , 445 – 461 .  

  4. Engvall , A.-C. , Krejci , R. , Strom , J. , Minilcin , A. , Treffeisen , R. and co-authors. 2008. In-situ airborne observations of the microphysical properties of the Arctic tropospheric aerosol during late summer and spring. Tellus, 60B, 392 – 404.  

  5. Gabric , A. J. , Qu , B. , Matrai , P. and Hirst , A. C . 2005 . The simulated response of dimethylsulfide production in the Arctic Ocean to global warming . Tellus , 57B , 391 – 403 .  

  6. Garrett , T. J. and C. Zhao . 2006 . Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes . Nature , 440 , 787 – 789 .  

  7. Garrett , T. J. , Zhao , C. , Dong , X. , Mace , G. G. and Hobbs , P. V . 2004. Ef-fects of varying aerosol regimes on low-level Arctic stratus. Geophys. Res. Lett., 31, https://doi.org/10.1029/2004GL019928 .  

  8. Grenfell , T. C. and Perovich , D. K . 1984 . Spectral albedos of sea ice and incident solar irradiance in the Southern Beaufort Sea . J. Geophys. Res ., 89 , 3573 – 3580 .  

  9. Guo , G. , Ji , Q. , Yang , P. and Tsay , S.-C . 2005 . Remote sensing of cirrus optical and microphysical properties from ground-based infrared ra-diometric measurements — Part II: retrievals from CRYSTAL-FACE measurements . IEEE Geosci. Rem. Sens. Lett ., 2 , 132 – 135 .  

  10. Heintzenberg , J. , Leck , C. , Birmili , W. , Wehner , B. , Tjernström , M. and Weidensohler , A. 2006. Aerosol number-size distributions during clear and fog periods in the summer high Arctic : 1991,1996 and 2001. Tellus, 58B, 41 – 50.  

  11. Knuteson , R. O. , Revercomb , H. E. , Best , E A. , Ciganovich , N. C. , Dedecker , R. G. and co-authors 2004. Atmospheric Emitted Radiance Interferometer. Part II: instrument performance . J. Ocean. Atmos. Tech ., 21 , 1777– 1789 .  

  12. Korhonen , H. , Carslaw , K. S. , Spracklen , D. V. , Ridley , D. A. and Strom , J. 2008. A global model study of processes controlling aerosol size distributions in the Arctic spring and summer. J. Geophys. Res ., 113 , https://doi.org/10.1029/2007JD009114 .  

  13. Lawson , R. P. , Baker , B. A. and Schmitt , C. G. 2001. An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res ., 106 , 14989 – 15014.  

  14. Lohmann , U. and Feichter , J . 2005 . Global indirect aerosol effects: a review . Atm. Chem. Phys ., 5 , 715 – 737 .  

  15. Lohmann , U. and Leck , C . 2005 . Importance of submicron surface-active organic aerosols for pristine Arctic clouds . Tellus , 57B , 261 – 268 .  

  16. Lubin , D. and Simpson , A. S . 1997 . Measurement of surface radiation fluxes and cloud optical properties during the 1994 Arctic Ocean Section . J. Geophys. Res . 102 , 4275 – 7286 .  

  17. Lubin , D. and Vogelmann , A. M . 2006 . A climatologically significant aerosol longwave indirect effect in the Arctic . Nature , 439 , 345 – 456 .  

  18. Lubin , D. and Vogelmann , A. M . 2007 . Expected magnitude of the aerosol shortwave indirect effect in springtime Arc-tic liquid water clouds . Geophys. Res. Lett ., 34 , L11801 , https://doi.org/10.1029/2006GL028750 .  

  19. Mauger , G. and Norris , J. R . 2007 . Meteorological bias in satellite esti-mates of aerosol-cloud relationships . Geophys. Res. Lett ., 34 , L16824 , https://doi.org/10.1029/2007GL029952 .  

  20. Michalsky , J. , Dutton , E. , Rubes , M. , Nelson , D. , Stoffel , T. and co-authors 1999. Optimal measurement of surface shortwave irradiance using current instrumentation. J. Ocean. Atmos. Tech., 16, 55 – 69.  

  21. Morrison , H. , Curry , J. A. , Shupe , M. D. and Zuidema , P. 2005. A new double-moment microphysics parameterization for application in cloud and climate models. Part II: single-column modeling of arctic clouds . J. Atmos. Sci ., 62 , 1678– 1693 .  

  22. Penner , J. E. , Quaas , J. , Storelvmo , T. , Takemura , T. , Boucher , O. and co-authors 2006. Model intercomparison of indirect aerosol effects. Atmos. Chem. Phys . 6 , 3391 – 3405 .  

  23. Perovich , D. K. , Grenfell , T. C. , Light , B. and Hobbs , P. V . 2002. Seasonal evolution of the albedo of multiyear Arctic sea ice. J. Geophys. Res ., 107 , https://doi.org/10.1029/2000JC000438 .  

  24. Podgorny , I. and Lubin , D . 1998 . Biologically active insolation over Antarctic waters: effect of a highly reflecting coastline . J. Geophys. Res ., 103 , 2919 – 2928 .  

  25. Polissar , A. V. and Hopke , P. K . 2001 . Source regions for atmospheric aerosol measured at Barrow, Alaska . Environ. Sci. Technol ., 35 , 4214 – 4226 .  

  26. Quinn , P. K. , Miller , T. L. , Bates , T. S. , Ogren , J. A. , Andrews , E. and co-authors 2002. A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. J. Geophys. Res ., 107 , https://doi.org/10.1029/2001J1D001248 .  

  27. Stamnes , K. , Tsay , S.-C. , Wiscombe , W. J. and Jayaweera , K . 1988 . Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media . AppL Opt ., 27 , 2502 – 2509 .  

  28. Stamnes , K. , Ellingson , R. G. , Curry , J. A. , Walsh , J. E. and Zak , B. D . 1999 . Review of science issues, deployment strategy, and status for the ARM North Slope of Alaska—Adjacent Arctic Ocean climate research site . J. Clim ., 12 , 46 – 63 .  

  29. Stroeve , J. , Holland , M. M. , Meier , W. , Scambos , T. and Serreze , M. C. 2007. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett, 34, L09501 , https://doi.org/10.1029/2007GL029703 .  

  30. Turner , D. D . 2005 . Arctic mixed-phase cloud properties from AERI lidar observations: algorithm and results from SEHBA . J. AppL Me-teorol ., 44 , 427 – 444 .  

  31. Twomey , S . 1977 . The influence of pollution on the shortwave albedo of clouds . J. Atmos. Sci ., 34 , 1149 – 1152 .  

  32. Verlinde , J. , Harrington , J. Y. , McFarquhar , G. M. , Yannuzi , V. T. , Avaramov , A. and co-authors 2007. The mixed-phase arctic cloud experiment. Bull. Am. MeteoroL Soc., 88, 205 – 221.  

  33. Westwater , E. R. , Han , Y. , Shupe , M. D and Matrosov , S. 2001. Analysis of integrated cloud liquid water and precipitable water vapor retrievals from microwaver radiometers during the Surface Heat Budget of the Arctic Ocean project. J. Geophys. Res ., 106 , 32019 – 32030.  

comments powered by Disqus