Start Submission Become a Reviewer

Reading: Spring initiation and autumn cessation of boreal coniferous forest CO2 exchange assessed by ...

Download

A- A+
Alt. Display

Original Research Papers

Spring initiation and autumn cessation of boreal coniferous forest CO2 exchange assessed by meteorological and biological variables

Authors:

T. Thum ,

Finnish Meteorological Institute, Global and Climate Change Research, FI
X close

T. Aalto,

Finnish Meteorological Institute, Global and Climate Change Research, FI
X close

T. Laurila,

Finnish Meteorological Institute, Global and Climate Change Research, FI
X close

M. Aurela,

Finnish Meteorological Institute, Global and Climate Change Research, FI
X close

J. Hatakka,

Finnish Meteorological Institute, Global and Climate Change Research, FI
X close

A. Lindroth,

Lund University, Department of Physical Geography and Ecosystems Analysis, SE
X close

T. Vesala

University of Helsinki, Department of Physics, FI
X close

Abstract

We studied the commencement and finishing of the growing season using different air temperature indices, the surface albedo, the chlorophyll fluorescence (Fv/Fm) and the carbon dioxide (CO2) tropospheric concentration, together with eddy covariance measurements of CO2 flux. We used CO2 flux data from four boreal coniferous forest sites covering a wide latitudinal range, and CO2 concentration measurements from Sammaltunturi in Pallas. The CO2 gas exchange was taken as the primary determinant for the growing season to which other methods were compared.

Indices based on the cumulative temperature sum and the variation in daily mean temperature were successfully used for approximating the start and cessation of the growing season. The beginning of snow melt was a successful predictor of the onset of the growing season. The chlorophyll fluorescence parameter Fv/Fm and the CO2 concentration were good indicators of both the commencement and cessation of the growing season. By a derivative estimation method for the CO2 concentration, we were also able to capture the larger-scale spring recovery. The trends of the CO2 concentration and temperature indices at Pallas/Sammaltunturi were studied over an 11-yr time period, and a significant tendency towards an earlier spring was observed. This tendency was not observed at the other sites.

How to Cite: Thum, T., Aalto, T., Laurila, T., Aurela, M., Hatakka, J., Lindroth, A. and Vesala, T., 2009. Spring initiation and autumn cessation of boreal coniferous forest CO2 exchange assessed by meteorological and biological variables. Tellus B: Chemical and Physical Meteorology, 61(5), pp.701–717. DOI: http://doi.org/10.1111/j.1600-0889.2009.00441.x
1
Views
  Published on 01 Jan 2009
 Accepted on 17 Aug 2009            Submitted on 18 Feb 2009

References

  1. Aalto , T. , Hatakka , J. , Paatero , J. , Tuovinen , J.-R , Aurela , M. , and co-authors. 2002. Tropospheric carbon dioxide concentrations at a noth-ern boreal site in Finland: basic variations and source areas. Tellus 54B, 110 – 126.  

  2. Ananyev , G. , Kolber , Z. S. , Klimov , D. , Falkowski , P. G , Berry , J. S. and co-authors. 2005. Remote sensing of heterogeneity in photosynthetic efficiency, electron transport and dissipation of excess light in Populus deltoids stands under ambient and elevated CO2 concentrations, and in a tropical forest canopy, using a new laser-induced fluorescence transient device. Global Change Biol. 11, 1195 – 1206.  

  3. Arneth , A. , Lloyd , J. , Shibistova , O. , Sogachev , A. and Kolle , O. 2006. Spring in the boreal environment: observations on pre- and post-melt energy and CO2 fluxes in two central Siberian ecosystems. Boreal Environ. Res. 11, 311 – 328.  

  4. Aurela , M . 2005. Carbon dioxide exchange in subarctic ecosystems mea-sured by a micrometeorological technique. Contributions 51, Finnish Meteorological Institute, Helsinki, Finland, 132 pp.  

  5. Baker , N. R . 2008 . Chlorophyll fluorescence: a probe of photosynthesis in vivo . Annu. Rev. Plant Biol . 59 , 89 – 113 .  

  6. Baldocchi , D. , 2003. Assessing the eddy covariance technique for eval-uating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol. 9, 479 – 492.  

  7. Bartsch , A. , Kidd , R. A. , Wagner , W. and Bartalis. Z . 2007 . Temporal and spatial variability of the beginning and end of daily spring freeze/thaw cycles derived from scatterometer data . Remote Sens. Environ . 106 , 360 – 374 .  

  8. Bergh , J. and Linder , S . 1999 . Effects of soil warming during spring on photosynthetic recovery in boreal Norway spruce stands . Global Change Biol . 5 , 245 – 253 .  

  9. Busch , F. , Hiiner , N. P. A. and Ensminger , I . 2007 . Increased air tem-perature during simulated autumn conditions does not increase pho-tosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine . Plant PhysioL 143 , 1242 – 1251 .  

  10. Churlcina , G. , Schimel , D. , Braswell , B. H. and Xiao , X. 2005. Spatial analysis of growing season length control over net ecosystem exchange . Global Change Biol . 11 , 1777– 1787 .  

  11. Denning , S. , Nicholls , M. , Prihodko , L. , Baker , I. , Vidale , P.L. and co-authors. 2003. Simulated variations in atmospheric CO2 over a Wis-consin forest using a coupled ecosystem-atmosphere model. Global Change Biol. 9, 1241 – 1250.  

  12. Dunn , A. L. , Barford , C. C. , Wofsy , S. C. , Goulden , M. L. and Daube , B. C. 2007. A long-term record of carbon exchange on a boreal black spruce forest: means, responses to interannual variability and decadal trends. Global Change Biol. 13, 577 – 590.  

  13. Eneroth , K. , Aalto , T. , Hataldca , J. , Holmen , K. , Laurila , T. and co-authors. 2005. Atmospheric transport of carbon dioxide to a baseline monitoring station in northern Finland. Tellus 57B, 366 – 374.  

  14. Ensminger , I. , Sveshnilcov , D. , Campbell , D. A. , Funk , C. , Jansson , S. and co-authors. 2004. Intermittent low temperatures constrain spring recovery of photosynthesis in boreal Scots pine forests. Global Change Biol. 10, 995 – 1008.  

  15. Ensminger , I. , Schmidt , L. and Lloyd , J. 2008. Soil temperature and intermittent frost modulate the rate of recovery of photosynthesis in Scots pine under simulated spring conditions. New Phytol. 177, 428 – 442.  

  16. Evain , S. , Flexas , J. and Moya , I . 2004 . A new instrument for passive remote sensing: 2. Measurements of leaf and canopy reflectance at 531 nm and their relationship with photosynthesis and chlorophyll fluorescence . Remote Sens. Environ . 91 , 175 – 184 .  

  17. Falge , E. , Baldocchi , D. , Tenhunen , J. , Aubinet , M. , Bakwin , P. and co-authors. 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric. Forest MeteoroL 113, 53 – 74.  

  18. Finnish Meteorological Institute . 1991 . Climatological Statistics in Fin-land 1961-1990 . Supplement to the Meteorological Yearbook of Fin-land. The Finnish Meteorological Institute , Helsinki, Finland .  

  19. Flexas , J. , Escalona , J. M. , Evain , S. , Gulias , J. , Moya , I. and co-authors. 2002. Steady-state chlorophyll fluorescence (Fs) measurements as a tool to follow variations of net CO2 assimilation and stomatal conduc-tance during water-stress in C3 plants. Physio/ogia P/antarum 114, 231 – 240.  

  20. Grelle , A. , Lindroth , A. and Molder , M . 1999. Seasonal variation of boreal forest surface conductance and evaporation. Agric. Forest Me-teorol. 98-99, 563 – 578.  

  21. Gloor , M. , Balcwin , P. , Hurst , D. , Lock , L. , Draxler , R. and co-authors. 2001. What is the concentration footprint of a tall tower? J. Geophys. Res . 106 , 17831 – 17840.  

  22. Gu , L. , Hanson , P. J. , Post , W. M. , Kaiser , D. P. , Yang , B. and co-authors. 2008. The 2007 eastern US spring freeze: increased cold damage in a warming world? BioScience 58, 253 – 262.  

  23. Hänninen , H. and Kramer , K . 2007 . A framework for modelling the annual cycle of trees in boreal and temperate regions . Silva Fenn . 41 , 167 – 205 .  

  24. Hatalcka , J. , Aalto , T. , Aaltonen , V. , Aurela , M. , Hakola , H. and co-authors. 2003. Overview of atmospheric research activities and results at Pallas GAW station. Boreal Environ. Res. 8, 365 – 384.  

  25. Higuchi , K. , Worthy , D. , Chan , D. and Shaskov, A. 2003. Regional source/sink impact on the diurnal, seasonal and inter-annual variations in atmospheric CO2 at a boreal forest site in Canada. Tellus 55B, 115 – 125.  

  26. Holdridge , L. R . 1967 . Lize zone Ecology . Tropical Science Center , San Jose .  

  27. Jonsson , A. M. , Linderson , M.-J. , Stjernquist , I. , Schlyter , P. and Barring, L. 2004. Climate change and the effect of temperature backlashes causing frost damage in Picea abies. Global Planet. Change 44, 195 – 207.  

  28. Keeling , C. D. , Chin , J. F. S. and Whorf , T. P. 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146 – 149.  

  29. Kimball , J. S. , McDonald , K. C. , Running , S. W. and Frolking , S. E . 2004 . Satellite radar remote sensing of seasonal growing seasons for boreal and subalpine evergreen forests . Remote Sens. Environ . 90 , 243 – 258 .  

  30. Kolari , P. , Lappalainen , H. K. , Hänninen , H. and Han , P . 2007 . Relation-ship between temperature and the seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone . Tellus 59B , 542 – 552 .  

  31. Lagergren , F. , Eklundh , L. , Grelle , A. , Lundblad , M. , Molder , M. and co-authors. 2005. Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant Cell Environ. 28, 412 – 423.  

  32. Lagergren , E , Lindroth , A. , Dellwilc , E. , Ibrom , A. , Lanlcreijer , H. and co-authors. 2008. Biophysical controls on CO2 fluxes of three north-ern forests based on long-term eddy covariance data. Tellus 60B, 143 – 152.  

  33. Leinonen , I. and Kramer , K . 2002 . Applications of phonological models to predict the future carbon sequestration potential of boreal forests . Climatic Chance 5 , 99 – 113 .  

  34. Leinonen , I. , Repo , T. and Hänninen , H. 1997. Changing environmental effects on frost hardiness of Scots pine during dehardening. Ann. Bot-London 79, 133 – 137.  

  35. Linlcosalo , T. , Häldcinen , R. , Terhivuo , J. , Tuomenvirta , H. and Hari , P. 2008. The time series of flowering and leaf bud burst of bo-real trees (1846-2005) support the direct temperature observa-tions of climatic warming. Agric. Forest. MeteoroL 149, 453 – 461.  

  36. Louis , J. , Ounis , A. , Ducruet , J.-M. , Evain , S. , Laurila , T. and co-authors. 2005. Remote sensing of sunlight-induced chlorophyll fluorescence and reflectance of Scots pine in the boreal forest during spring recov-ery. Remote Sens. Environ. 96, 37 – 48.  

  37. Makeld , A. , Hari , P. , Berninger , F. , Hänninen , H. and Nilcinmaa , E . 2004 . Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature . Tree Phys . 24 , 369 – 376 .  

  38. Makeld , A. , Kolari , P. , Karimälci , J. , Nilcinmaa , E. , Peramaki , M. and co-authors. 2006. Modelling five years of weather-driven variation of GPP in a boreal forest. Agric. Forest MeteoroL 139, 382 – 398.  

  39. Marklcanen , T. , Rannik , Ü. , Keronen , P. , Suni , T. and Vesala , T. 2001. Eddy covariance fluxes over a boreal Scots pine forest. Boreal Environ. Res. 6, 65 – 78.  

  40. Maxwell , K. and Johnson , G. N . 2000 . Chlorophyll fluorescence - a practical guide . J. Exp. BoL 61 , 659 – 668 .  

  41. Meroni , M. and Colombo , R . 2006 . Leaf level detection of solar induced chlorophyll fluoresence by means of a subnanometer resolution spec-troradiometer . Remote Sens. Environ . 103 , 438 – 448 .  

  42. Moncrieff , J. , Clement , R. , Finnigan , J. and Meyers , T . 2004. Averaging, detrending and filtering eddy covariance time series. In: Handbook of Micrometeorology: A Guide for Surface Flux Measurements (eds X. Lee, W. Massman and B. Law). Kluwer Academic Press, Dordrecht, The Netherlands, 7 – 31.  

  43. Monson , R. K. , Sparks , J. P. , Rosenstiel , T. N. , Scott-Denton , L. E. , Hux-man , T. E. and co-authors. 2005. Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecolo-gia 146, 130 – 147.  

  44. Moya , I. , Camenenb , L. , Evain , S. , Goulas , Y. , Cerovic , Z. G. and co-authors. 2004. A new instrument for passive remote sensing: 1. Mea-surements of sunlight-induced chlorophyll fluorescence. Remote Sens. Environ. 91, 186 – 197.  

  45. Murayama , S. , Higuchi , K. and Taguchi , S . 2007 . Influence of at-mospheric transport on the inter-annual variation of the CO2 sea-sonal cycle downward zero-crossing . Geophys. Res. Lett . 34 , L04811 , https://doi.org/10.1029/2006GL028389 .  

  46. Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) . 2006 . MODIS subsetted land products, Collection 4. Available on-line [http://www.daac.ornl.gov/MODIS/modis.html] from ORNL DAAC, Oak Ridge, Tennessee, U.S.A . Accessed March 17 , 2008 .  

  47. Ogren , E . 2001 . Effects of climatic warming on cold hardiness of some northern woody plants assessed from simulation experiments . PhysioL Planta rum 112 , 71 – 77 .  

  48. Pelkonen , P. and Han , P. 1980. The dependence of the springtime recov-ery of CO2 uptake in Scots pine on temperature and internal factors. Flora 169, 398 – 404.  

  49. Piao , S. , Ciais , R , Friedlingstein , P. , Peylin , P. , Reichstein , M. and co-authors. 2008. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451, 49 – 52.  

  50. Randerson , J. T. , Field , C. B. , Fung , I. Y. and Tans , P. P . 1999 . In-creases in early season ecosystem uptake explain the recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes . Geophys. Res. Lett . 26 , 2765 – 2768 .  

  51. Repo , T. , Hänninen , H. and Kellomälci , S . 1996 . The effects of long-term elevation of air temperature and CO2 on the frost hardiness of Scots pine . Plant Cell Environ . 19 , 209 – 216 .  

  52. Rosema , A. , Snel , J. F. H. , Zahn , H. , Buurmeijer , W. F. and Van Hode , L. W. A. 1998. The relation between laser-induced chlorophyll fluo-rescence and photosynthesis. Remote Sens. Environ. 65, 143 – 154.  

  53. Schleip , C. , Menzel , A. and Dose , V . 2008 . Norway spruce (Picea abies): Bayesian analysis of the relationship between temperature and bud burst . Agric. Forest MeteoroL 148 , 631 – 643 .  

  54. Solantie , R . 2004 . Daytime temperature sum—a new thermal variable describing growing season characteristics and explaining evapotran-spiration . Boreal Environ. Res . 9 , 319 – 333 .  

  55. Solantie , R . 2005 . Productivity of boreal forests in relation to climate and vegetation zones . Boreal Environ. Res . 10 , 275 – 297 .  

  56. Suni , T. , Berninger , E , Marlcicanen , T. , Keronen , R , Rannilc , U. and co-authors. 2003. Interannual variability and timing of growing-season CO2 exchange in a boreal forest. J. Geophys. Res . 108 , 4265, https://doi.org/10.1029/2002JD002381 .  

  57. Tanja , S. , Berninger , E , Vesala , T. , Marlcicanen , T. , Hari , P. and co-authors. 2003. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biol. 9, 1410 – 1426.  

  58. Taylor , G. , Tallis , M.J. , Giardina , C. R. , Percy , K. E. , Miglietta , F. and co-authors. 2008. Future atmospheric CO2 leads to delayed autumnal senescence. Global Change Biol. 14, 264 – 275.  

  59. Thoning , K. W. , Tans , P. P. and Komhyr, W. D. 1989. Atmospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res . 94 , 8549 – 8565.  

  60. Thum , T. , Aalto , T. , Laurila , T. , Aurela , M. , Lindroth , A. and co-authors . 2008. Assessing seasonality of biochemical CO2 exchange model pa-rameters from micrometeorological flux observations at boreal conif-erous forest . Biogeosciences 5 , 1625– 1639 .  

  61. Trenberth , K. E. , Jones , P. D. , Ambenje , R , Bojariu , R. , Easterling , D. and co-authors. 2007. Observations: surface and atmospheric climate change. In: Climatic Change 2007: The Physical Science Basis. Con-tribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, and co-editors). Cambridge University Press , Cambridge , United Kingdom and New York, NY, USA.  

  62. Tuomenvirta , H. , Alexandersson , H. , Drebs , A. , Frich , P. and Nordli , P.O. 2000. Trends in nordic and arctic temperature extremes and ranges. J. Clim. 13, 977 – 990.  

  63. Ueyama , M. , Harazono , Y. and Ohtalci , E . 2006 . Controlling factors on the interannual CO2 budget at subarctic black spruce forest in interior Alaska . Tellus 58B , 491 – 501 .  

  64. Vendläinen , A. and Nordlund , A . 1988. Kasvukauden ilmastotiedotteen sisälti3 ja käyttö (Contents and use of the climatological report of a growing season, in Finnish). Finnish Meteorological Institute Reports 1988:6, Finnish Meteorological Institute, Helsinki, 63 pp.  

  65. Vesala , T. , Haataja , J. , Aalto , P. , Altimir , N. , Buzorius , G. and co-authors. 1998. Long-term field measurements of atmosphere-surface interac-tions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Mo-ment. Transfer 4, 17 – 35.  

  66. Vesala , T. , Suni , T. , Rannilc , Ü. , Keronen , P. , Marklcanen , T. and co-authors. 2005. Effect of thinning on surface fluxes in a boreal forest. Global Biogeochem. Cyc. 19, https://doi.org/10.1029/2004GB002316 .  

  67. Welp , L. R. , Randerson , J. T. and Liu , H. P. 2007. The sensitivity of carbon fluxes to spring warming and summer drought depends on plant functional type in boreal forest ecosystems. Agric. Forest Meteorol. 147, 172 – 185.  

  68. Woldendorp , G. , Hill , M.J. , Doran , R. and Ball , M. C. 2008. Frost in fu-ture climate: modelling interactive effects of warmer temperatures and rising atmospheric [CO2] on the incidence and severity of frost dam-age in a temperate evergreen (Eucalyptus pauciflora). Global Change Biol. 14, 294 – 308.  

  69. Yuan , F. , Arain , A. , Barr , A. G. , Black , A. , Bourque , C. P.-A. and co-authors . 2008. Modeling analysis of primary controls on net ecosystem productivity of seven boreal and temperate coniferous forests across a continental transect . Global Change Biol . 14 , 1765– 1784 .  

comments powered by Disqus