Start Submission Become a Reviewer

Reading: Estimating the Asian radon flux density and its latitudinal gradient in winter using ground-...

Download

A- A+
Alt. Display

Original Research Papers

Estimating the Asian radon flux density and its latitudinal gradient in winter using ground-based radon observations at Sado Island

Authors:

Alastair G. Williams ,

Australian Nuclear Science and Technology Organisation, AU
X close

Scott Chambers,

Australian Nuclear Science and Technology Organisation, AU
X close

Wlodek Zahorowski,

Australian Nuclear Science and Technology Organisation, AU
X close

Jagoda Crawford,

Australian Nuclear Science and Technology Organisation, AU
X close

Kiyoshi Matsumoto,

Division of Interdisciplinary Sciences, University of Yamanashi, JP
X close

Mitsuo Uematsu

Ocean Research Institute, The University of Tokyo, JP
X close

Abstract

Terrestrial radon-222 flux density for the Asian continent, integrated over distances of 4500 km, is estimated in two 20. latitudinal bands centred on 48.8.N and 63.2.N. The evaluation is based on three years of wintertime radon measurements at Sado Island, Japan, together with meteorological and trajectory information. A selection of 18% of observations are suitable for evaluation of an analytical expression for the continental surface flux. Various meteorological assumptions are discussed; it is found that there is a substantial effect of increased complexity of the formulation on the flux estimates obtained. The distribution of spatially integrated radon flux over the Asian landmass is reported for the first time. Expressed as geometric means and 1±-ranges, estimated fluxes are 14.1 mBq m.2 s.1 (1±-range: 18 mBq m-2 s-1) and 8.4 mBq m-2 s-1 (1±-range: 10 mBq m-2 s-1) for the lower and higher latitude bands. These results constitute an annual minimum in flux densities for these regions, and are higher than previously reported. The existence of a latitudinal gradient in the continental radon source function is confirmed; the present estimate for Asia (-0.39 mBq m-2 s-1 per degree of latitude) is in agreement with the northern hemisphere terrestrial radon flux gradient proposed previously.

How to Cite: Williams, A.G., Chambers, S., Zahorowski, W., Crawford, J., Matsumoto, K. and Uematsu, M., 2009. Estimating the Asian radon flux density and its latitudinal gradient in winter using ground-based radon observations at Sado Island. Tellus B: Chemical and Physical Meteorology, 61(5), pp.732–746. DOI: http://doi.org/10.1111/j.1600-0889.2009.00438.x
  Published on 01 Jan 2009
 Accepted on 21 Jul 2009            Submitted on 8 Apr 2009

References

  1. Anderson , R. V. and Larson , R. E . 1974 . Atmospheric electric and radon profiles over a closed basin and the open ocean . J. Geophys. Res . 79 ( 24 ), 3432 – 3435 .  

  2. Ballcanski , Y. J. , Jacob , D. J. , Arimoto , R. and Kritz , M. A . 1992 . Dis-tribution of 222Ril over the North Pacific: implications for continental influences . J. Atmos. Chem . 14 , 353 – 374 .  

  3. Biraud , S. , Ciais , P. , Ramonet , M. and Simmonds , P . 2000 . European greenhouse gas emissions from continuous atmospheric measure-ments and radon 222 at Mace Head, Ireland . J. Geophys. Res . 105 ( D1 ), 1351 – 1366 .  

  4. Butterweck , G. , Reineking , A. , Kesten , J. and Porstendörfer , J . 1994 . The use of the natural radioactive noble gases radon and thoron as tracers for the study of turbulent exchange in the atmospheric bound-ary layer—case study in and above a wheat field . Atmos. Env . 28 ( 12 ), 1963 – 1969 .  

  5. Chambers , S. , Zahorowslci , W. , Matsumoto , K. and Uematsu , M . 2008 . Seasonal variability of radon-derived fetch regions for Sado Island, Japan, based on 3 years of observations: 2002-2004 . Atmos. Env . 43 , 271 – 279 .  

  6. Chevillard , A. , Ciais , P. , Karstens , U. , Heimann , M. , Schmidt , M. and co-authors. 2002. Transport of 222Ril using the regional model REMO: a detailed comparison with measurements over Europe. Tellus 54B, 850 – 871.  

  7. Conen , F. and Robertson , L. B . 2002 . Latitudinal distribution of radon-222 flux from continents . Tellus 54B , 127 – 133 .  

  8. Considine , D. B. , Bergmann , D. J. and Liu , H . 2005 . Sensitivity of global modeling initiative chemistry and transport model simulations of radon-222 and lead-210 to input meteorological data . Atm. Chem. Phys . 5 , 3389 – 3406 .  

  9. Cotton , W. R. , Alexander , G. D. , Hertenstein , R. , Walko , R. L. , McAnelly , R. L and co-authors. 1995. Cloud venting—a review and some new global annual estimates. Earth Sci. Rev. 39, 169 – 206.  

  10. Dentener , E , Feichter , J. and Jeuken , A . 1999 . Simulation of the trans-port of 222Ril using on-line and off-line global models at different horizontal resolutions: a detailed comparison with measurements . Tel-lus 51B , 573 – 602 .  

  11. Draxler , R. R. and Hess , G. D . 1998 . An overview of the HYSPLIT-4 modelling system for trajectories, dispersion and deposition . AusL Met. Mag . 47 , 295 – 308 .  

  12. Forster , C. , Stohl , A. and Seibert , P . 2007 . Parameterization of convective transport in a lagrangian particle dispersion model and its evaluation . J. AppL Met. Clim . 46 , 403 – 422 .  

  13. Gaudry , A. , Polian , G. , Ardouin , B. and Lambert , G . 1990 . Radon-calibrated emissions of CO2 from South Africa. Tellus 42B, 9-19. Geels, C., Gloor, M., Ciais, P., Bousquet, R, Peylin, P. and co-authors . 2007. Comparing atmospheric transport models for future regional in-versions over Europe-Part 1: mapping the atmospheric CO2 signals . Atmos. Chem. Phys . 7 , 3461 – 3479 .  

  14. Giannakopoulos , C. , Chipperfield , M. P. , Law , K. S. and Pyle , J. A . 1999 . Validation and intercomparison of wet and dry deposition schemes using 210p,to •11. a global three-dimensional off-line chemical transport model . J. Geophys. Res . 104 ( D19 ), 23761 – 23784 .  

  15. Guedalia , D. , Allet , C. and Fontan , J . 1974 . Vertical exchange mea-surements in the lower troposphere using ThB (Pb-212) and Radon (Rn-222) . J. AppL Met . 13 , 27 – 39 .  

  16. Gupta , M. L. , Douglass , A. R. , Randolph Kawa , S. and Pawson , S . 2004 . Use of radon for evaluation of atmospheric transport models: sensitivity to emissions . Tellus 56B , 404 – 412 .  

  17. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. and co-authors. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415 ( 6872 ), 626 – 630.  

  18. Hattori , T. and Ichiji , T . 1998 . Estimates of seasonal variations of 222Ril from different origins by using the correlation between 222Ril and 212Pb concentrations in air . In: Radon and thoron in the human environment (eds. A. Katase and M. Shimo ). World Scientific Publishing Co. Pte. Ltd ., Singapore , 246 – 251 .  

  19. Hutter , A. R. and Knutson , E . 0. 1998 . An international intercomparison of soil gas radon and radon exhalation measurements . Health Phys . 74 , 108 – 114 .  

  20. Israel , H . 1951. Radioactivity of the atmosphere. In: Compendium of meteorology (ed. T. F. Malone ). American Meteorological Society, Washington, DC, 155 – 161.  

  21. Jacob , D. J. and Prather , M. J . 1990 . Radon-222 as a test of convective transport in a general circulation model. Tellus, 42B, 118-134. Jacob, D. J., Prather, M. J., Rasch, P. J., Shia, R.-L., Ballcanski, Y. J. and co-authors. 1997. Evaluation and intercomparison of global at-mospheric transport models using 222Ril and other short-lived tracers . J. Geophys. Res . 102 ( D5 ), 5953 – 5970 .  

  22. Jacobi , W. and Andre , K . 1963 . The vertical distribution of radon 222, radon 220 and their decay products in the atmosphere . J. Geophys. Res . 68 ( 13 ), 3799 – 3814 .  

  23. Jin , Y. , Iida , T. , Wang , Y. I. Z. and Abe , S . 1998 . A subnationwide survey of outdoor and indoor 222Ril concentrations in China by passive method . In: Radon and thoron in the human environment. Proceedings of the 7th Tohwa University International Symposium (eds. A. Katase and M. Shimo ). World Scientific Publishing Co. Pte. Ltd , Singapore , 276 – 281 .  

  24. Kajii , Y. , Alcimoto , H. , Komazaki , Y. , Tanaka , S. , Mukai , H. and co-authors. 1997. Long-range transport of ozone, carbon monoxide, and acidic trace gases at Oki Island, Japan, during PEM-West B; PEA-CAMPOT B campaign. J. Geophys. Res . 102 ( D23 ), 28637 – 28649.  

  25. Kirichenko , L. V . 1962 . The vertical distribution of the products of decay of radon in the free atmosphere. In: Problems of nuclear meteorology (eds. I. L. Karol and S. G. Malalchov ). United States Atomic Energy Commission, Division of Technical Information, AEC-TR- 6128 , 92 – 124 .  

  26. Kirichenko , L. V . 1970 . Radon exhalation from vast areas according to vertical distributions of its short-lived decay products . J. Geophys. Res . 75 ( 18 ), 3639 – 3649 .  

  27. Kritz , M. A . 1990 . The China clipper-fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California . Tellus , 42B , 46 – 61 .  

  28. Kurokawa , J. , Yumimoto , K. , Uno , I. and Ohara , T . 2009 . Adjoint in-verse modeling of NOx emissions over eastern China using satellite observations of NO2 vertical column densities . Atmos. Environ . 43 , 1878 – 1887 .  

  29. Lambert , G. , Polian , G. , Sanak , J. , Ardouin , B. , Buisson , A. and co-authors. 1982. Cycle du radon et de ses descentants: application l' etude des echanges troposphere-stratosphere. Ann. Geophys. 38 ( 4 ), 497 – 531.  

  30. Larson , R. E . 1974 . Radon profiles over Kilauea, the Hawaiian Islands, and Yukon Valley snow cover . Pure AppL Geophys . 112 , 204 – 208 .  

  31. Lee , H. N. and Feichter , J . 1995 . An intercomparison of wet precipitation scavenging schemes and emission rates of 222Ril for the simulation of global transport and deposition of 210Pb . J. Geophys. Res . 100 ( D11 ), 23253 – 23270 .  

  32. Lee , H. N. and Larson , R. J . 1997 . Vertical diffusion in the lower atmo-sphere using aircraft measurements of 222Ril . J. AppL MeteoroL 36 , 1262 – 1270 .  

  33. Li , Y. and Chang , J. S . 1996 . A three-dimensional global episodic tracer transport model: 1 Evaluation of its transport processes by radon 222 simulations . J. Geophys. Res . 101 ( D20 ), 25931 – 25947 .  

  34. Lin , J. C. , Gerbig , C. , Wofsy , S. C. , Daube , B. C. , Matross , D. M. and co-authors. 2006. What have we learned from intensive atmospheric sampling field programmes of CO2? Tellus 58B, 331 – 343.  

  35. Liu , S. C. , McAfee , J. R. and Cicerone , R. J . 1984 . Radon 222 and tropospheric vertical transport . J. Geophys. Res . 89 ( D5 ), 7291 – 7297 .  

  36. Malalchov , S. G. , Bakulin , V. N. , Dmitrieva , G. V , Kirichenko , L. V. , Sisigina , T. I. , and co-authors. 1966. Diurnal variations of radon and thoron decay product concentrations in the surface layer of the atmo-sphere and their washout by precipitation. Tellus 18, 643 – 654.  

  37. Merrill , J. T. , Newell , R. E. and Bachmeier , A. S . 1997 . A meteorolog-ical overview for the Pacific Exploratory Mission-West Phase B . J. Geophys. Res . 102 ( D23 ), 28241 – 28253 .  

  38. Nazaroff , W. W . 1992 . Radon transport from soil to air . Rev. Geophys . 30 , 137 – 160 .  

  39. Nazarov , L. E. , Kuzenkov , A. E , Malalchov , S. G. , Volokitina , L. A. , Gaziyev , Y. I. , and co-authors. 1970. Radioactive aerosol distribution in the middle and upper troposphere over the USSR in 1963-1968 . J. Geophys. Res . 75 ( 18 ), 3575-3588 .  

  40. Perry , K. D. , Cahill , T. A. , Schnell , R. C. and Harris , J. M . 1999 . Long-range transport of anthropogenic aerosols to the National Oceanic and Atmospheric Administration baseline station at Mauna Loa Observa-tory, Hawaii . J. Geophys. Res . 104 ( D15 ), 18521 – 18533 .  

  41. Polian , G. , Lambert , G. , Ardouin , B. and Jegou , A . 1986 . Long-range transport of continental radon in subantarctic and arctic areas . Tellus 38B , 178 – 189 .  

  42. Preiss , N. , Melieres , M.-A. and Pourchet , M . 1996 . A compilation of data on lead 210 concentration in surface air and fluxes at the air-surface and water-sediment interfaces . J. Geophys. Res . 101 ( D22 ), 28847 – 28862 .  

  43. Rasch , P. J. , Feichter , J. , Law , K. S. , Mahowald , N. M. , Penner , J. E. and co-authors. 2000. A comparison of scavenging and deposi-tion processes in global models: results from the WCRP Cambridge Workshop of 1995. Tellus 52B, 1025 – 1056.  

  44. Roustan , Y. and Bocquet , M . 2006 . Inverse modelling for mercury over Europe . Atmos. Chem. Phys . 6 , 3085 – 3098 .  

  45. Schery , S. D. and Huang , S . 2004 . An estimate of the global distribution of radon emissions from the ocean . Geophys. Res. Lett . 31 , L19104 , 1 – 4 .  

  46. Schery , S. D. and Wasiolek , M. A . 1998. Modeling radon flux from the earth's surface. In: Radon and Thoron in the human environment (eds. A. Katase and M. Shimo ). Proceedings of the 7th Tohwa Uni-versity International Symposium, Fukuoka, Japan, World Scientific Publishing Co. Pte. Ltd, Singapore, 207 – 217.  

  47. Schmidt , M. , Graul , R. , Sartorius , H. and Levin, I. 1996. Carbon dioxide and methane in continental Europe: a climatology and 222Rn-based emission estimates. Tellus 48B, 457 – 473.  

  48. Tanimoto , H. , Sawa , Y. , Yonemura , S. , Yumimoto , K. , Matsueda , H. , and co-authors. 2008. Diagnosing recent CO emissions and ozone evolution in East Asia using coordinated surface observations, adjoint inverse modeling, and MOPITT satellite data . Atmos. Chem. Phys . 8 ( 14 ), 3867-3880 .  

  49. Turelcian , K. K. , Nozalci , Y. and Benninger , L. K . 1977 . Geochemistry of atmospheric radon and radon products . Ann. Rev. Earth Planet. Sci . 5 , 227 – 255 .  

  50. Vautard , R. , Beekmann , M. and Menut , L. 2000. Applications of adjoint modelling in atmospheric chemistry: sensitivity and inverse mod-elling. Environ. Model. Softw. 15, 703 – 709.  

  51. Warren , S. G. , Hahn , C. J. , London , J. , Chervin , R. M and Jenne, R. L. 1988. Global distribution of total cloud cover and cloud type amounts over the ocean. NCAR Technical Note, DOE/ER-0406, NCARTIN-317±STR. National Center for Atmospheric Research, Boulder, Col-orado.  

  52. Wigand , A. and Wenk , F . 1928 . Der gehalt der luft an radium-emanation, nach Messungen bei Flugzeugaufstiegen . Ann. Phys . 86 ( 13 ), 657 – 686 .  

  53. Wilkening , M. H. , Clements , W. E. and Stanley , D. 1972. Radon-222 flux measurements in widely separated regions. In: The Natural Radiation Environment II. Proceedings of the 2nd International Symposium on the Natural Radiation Environment, 7-10 August, Houston, Texas, 717 – 730.  

  54. Williams , A. G. , Zahorowski , W. , Chambers , S. , Hacker , J. M. , Sche-lander , P. , Element , A. , and co-authors. 2008. Mixing and vent-ing in clear and cloudy boundary layers using airborne radon measurements. Proceedings of the 18th American Meteorological Society Symposium on Boundary Layers and Turbulence, Stock-holm, Sweden, 9-13 June 2008. Conference paper 9B.4, 1-5. http://ams.confex.com/ams/pdfpapers/139974.pdf or available from corresponding author.  

  55. Yanai , M. S. , Esbensen , S. and Chu , J. H . 1973 . Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets . J. Atmos. Sci . 30 , 611 – 627 .  

  56. Zahorowski , W. , Chambers , S. , Wang , T. , Kang , C.-H. , Uno , I. and co-authors. 2005. Radon-222 in boundary layer and free tropospheric continental outflow events at three ACE-Asia sites. Tellus 57B, 124 – 140.  

  57. Zhuo , W. , Guo , Q. , Chen , B. and Cheng , G . 2008 . Estimating the amount and distribution of radon flux density from the soil surface in China . J. Env. Rad . 99 , 1143 – 1148 .  

comments powered by Disqus