Start Submission Become a Reviewer

Reading: The tropospheric cycle of H2: a critical review

Download

A- A+
Alt. Display

Original Research Papers

The tropospheric cycle of H2: a critical review

Authors:

D. H. Ehhalt,

Forschungszentrum Jülich, DE
X close

F. Rohrer

Forschungszentrum Jülich, DE
X close

Abstract

The literature on the distribution, budget and isotope content of molecular hydrogen (H2) in the troposphere is critically reviewed. The global distribution of H2 is reasonably well established and is relatively uniform. The surface measurements exhibit a weak latitudinal gradient with 3% higher concentrations in the Southern Hemisphere and seasonal variations that maximize in arctic latitudes and the interior of continents with peak-to-peak amplitudes up to 10%. There is no evidence for a continuous long-term trend, but older data suggest a reversal of the interhemispheric gradient in the late 1970s, and an increase in the deuterium content of H2 in the Northern Hemisphere from 80 standard mean ocean water (SMOW) in the 1970s to 130 today. The current budget analyses can be divided in two classes: bottom up, in which the source and sink terms are estimated separately based on emission factors and turnovers of precursors and on global integration of regional loss rates, respectively. That category includes the analyses by 3-D models and furnishes tropospheric turnovers around 75 Tg H2 yr−1. The other approach, referred to as top down, relies on inverse modelling or analysis of the deuterium budget of tropospheric H2. These provide a global turnover of about 105 Tg H2 yr−1. The difference is due to a much larger sink strength by soil uptake and a much larger H2 production from the photochemical oxidation of volatile organic compounds (VOC) in the case of the top down approaches. The balance of evidence seems to favour the lower estimates—mainly due to the constraint placed by the global CO budget on the H2 production from VOC. An update of the major source and sink terms yields: fossil fuel use 11±4 TgH2 yr−1; biomass burning (including bio-fuel) 15 ± 6 Tg H2 yr−1; nitrogen fixation (ocean) 6 ± 3 Tg H2 yr−1; nitrogen fixation (land) 3 ± 2 Tg H2 yr−1; photochemical production from CH4 23 ± 8 Tg H2 yr−1 and photochemical production from other VOC 18 ± 7 Tg H2 yr−1. The loss through reaction of H2 with OH is 19 ± 5 Tg H2 yr−1, and soil uptake 60+30 −20 Tg H2 yr−1. All these rates are well within the ranges of the corresponding bottom up estimates in the literature. The total loss of 79 Tg H2 yr−1 combined with a tropospheric burden of 155 Tg H2 yields a tropospheric H2 lifetime of 2 yr. Besides these major sources of H2, there are a number of minor ones with source strengths > 1 Tg H2 yr−1. Rough estimates for these are also given.

How to Cite: Ehhalt, D.H. and Rohrer, F., 2009. The tropospheric cycle of H2: a critical review. Tellus B: Chemical and Physical Meteorology, 61(3), pp.500–535. DOI: http://doi.org/10.1111/j.1600-0889.2009.00416.x
20
Views
5
Downloads
  Published on 01 Jan 2009
 Accepted on 22 Dec 2008            Submitted on 14 Jul 2008

References

  1. Andreae , M.O. and Merlet , P. 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles 15, 955-966 Arnason, B. and Sigurgeirsson, T. 1968. Deuterium content of water vapour and hydrogen in volcanic gas at Surtsey, Iceland. Geochim. Cosmochim. Acta 32, 807 – 813.  

  2. Bainbridge , A. , Friedman , I. and Suess , H. E . 1961 . Isotopic composition of atmospheric hydrogen and methane. Nature 192 , 648 – 649.  

  3. Barnes , D. H. , Wofsy , S. C. , Fehlau , B. P. and Gottlieb , E. W. 2003. Hydrogen in the atmosphere: observations above a forest canopy in a polluted environment. J. Geophys. Res . 108 , D6 , 4197 , https://doi.org/10.1029/2001JDO01199 .  

  4. Begemann , F. and Friedman , I . 1959 . Tritium and deuterium content of atmospheric hydrogen . Z. Naturforsch. A 14 , 1024 – 1031 .  

  5. Begemann , E and Friedman , I . 1968 . Isotopic composition of atmo-spheric hydrogen . J. Geophys. Res . 73 , 1139 – 1147 .  

  6. Bergamaschi , P. , Hein , R. , Heimann , M. and Crutzen , P. J . 2000 . In-verse modeling of the global CO cycle . J. Geophys. Res . 105 , 1909 – 1927 .  

  7. Bishop , K. F. and Taylor , B. T . 1960 . Growth of the tritium content of atmospheric molecular hydrogen . Nature 185 , 26 – 27 .  

  8. Bousquet , P. , Hauglustaine , D. A. , Carouge , C. and Ciais , P . 2005 . Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform . Atmos. Chem. Phys . 5 , 2635 – 2656 .  

  9. Brasseur , G. R , Hauglustaine , D. A. , Walters , S. , Rasch , P. J. , Muller , J.-F. and co-authors. 1998. MOZART, a global chemical transport model for ozone and related chemical tracers, 1: model description. J. Geophys. Res . 103 , 28265 – 28295.  

  10. Brock , T. D. and Madigan , M. T . 1991 . Biology of Microorganisms 6th edition (eds. T. Aloisi and C. Bracewell ). Prentice Hall , Upper Saddle River , NJ , 604 – 608 .  

  11. Broecker , W. S. and Peng , T.-H . 1974 . Gas exchange rates between air and sea . Tellus 26 , 21 – 35 .  

  12. Burns , R. C. and Hardy , R. W. E 1975 . Nitrogen Fixation in Bacteria and Higher Plants. Springer Verlag, Berlin, Heidelberg, New York. Collins, N. M. and Wood, T. G. 1984. Termites and atmospheric gas production. Science 224 , 84 – 86 .  

  13. Collins , W. J. , Stevenson , D. S. and Derwent , R. G . 1997 . Tropospheric Ozone in a global-scale three-dimensional Lagrangian model and its response to NO emissions controls . J. Atmos. Chem . 26 , 223 – 274 .  

  14. Conrad , R . 1999 . Soil Microorganisms Oxidizing Atmospheric Trace Gases (CH4, CO, H2, NO) . Ind. J. MicrobioL 39 , 193 – 203 .  

  15. Conrad , R. and Babbel , M . 1989 . Effect of dilution on methanogenesis, hydrogen turnover, and interspecies hydrogen transfer in anoxic paddy soil . FEMS MicrobioL EcoL 62 , 21 – 28 .  

  16. Conrad , R. and Seiler , W . 1980 . Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget . J. Geophys. Res . 85 , 5493 – 5498 .  

  17. Conrad , R. and Seiler , W . 1981 . Decomposition Of atmospheric hydro-gen by soil-microorganisms and soil enzymes . Soil Biol. Biochem . 13 , 43 – 49 .  

  18. Conrad , R. and Seiler , W . 1985 . Influence of temperature, moisture, and organic carbon on the flux of H2 and CO between soil and atmosphere: field studies in subtropical regions . J. Geophys. Res . 90 , 5699 – 5709 .  

  19. Craig , H . 1961 . Standard for reporting concentrations of deuterium and oxygen-18 in natural waters . Science 133 , 1833 – 1834 .  

  20. Craig , H. and Lal , D . 1961 . The production rate of natural tritium . Tellus 13 , 85 – 105 .  

  21. Deutsch , C. , Sarmiento , J. L. , Sigman , D. M. , Gruber , N. and Dunne , J. P . 2007 . Spatial coupling of nitrogen inputs and losses in the ocean . Nature 445 , 163 – 167 , https://doi.org/10.10.1038/nature05392 .  

  22. Dlugokencky , E. J. , Houweling , S. , Bruhwiler , L. , Masarie , K. A. , Lang , P. M. and co-authors. 2003. Atmospheric methane levels off: temporary pause or a nem steady-state? Geophys. Res. Lett. 30, 1029/2003GL018126.  

  23. Duncan , B. N. , Logan , J. A. , Bey , I. , Megretskaia , I. A , Yantosca , R. M. and co-authors. 2007. Global budget of CO, 1988-1997: source estimates and validation with a global model. J. Geophys. Res . 112 , D22301, https://doi.org/10.1029/2007JDO08459 .  

  24. Ehhalt , D. H . 1966 . Tritium and deuterium in atmospheric hydrogen . Tellus 18 , 249 – 255 .  

  25. Ehhalt , D. H . 1999 . Gas phase chemistry of the troposphere, in Global aspects of atmospheric chemistry (ed. R. Zellner ). Topics Phys. Chem . 6 , 21 – 109 .  

  26. Ehhalt , D. H. and Tönniffen , A. 1979. Hydrogen and carbon compounds in the stratosphere. In: Proceedings of the NATO Advanced Study Institute on Atmospheric Ozone: Its Variation and Human Influences (ed. A. C. Aikin ), Report No FAA-EE-80-20, Aldeia das Acoteias, Portugal, 1-13 October.  

  27. Ehhalt , D. H. and Volz , A . 1976. Coupling of the CH4 with the H2 and CO cycle: isotopic evidence. In: Symposium on Microbial Produc-tion and Utilization of Gases (112, CH4, CO) (eds. H. G. Schlegel , G. Gottschalk and N. Pfennig ). Akad. der Wiss. Gottingen, Germany , 23 – 33.  

  28. Ehhalt , D. , Israel , G. , Roether , W. and Stich , W . 1963 . Tritium and deuterium content of atmospheric hydrogen . J. Geophys. Res . 68 , 3747 – 3751 .  

  29. Ehhalt , D. , Roether , W. and Stich , W . 1966. Der Anstieg des Tritiumge-haltes im atmosphdrischen Wasserstoff seit 1960. Z. Naturforsch. 21a, 1703 – 1709.  

  30. Ehhalt , D. H. , Heidt , L. E. , Lueb , R. H. and Martell , E. A. , 1975 . Concen-trations of CH4, CO2, H2, H20, and N20 in the upper troposphere . J. Atmos. Sci . 32 , 163 – 169 .  

  31. Ehhalt , D. H. , Schmidt , U. and Heidt , L. E . 1977 . Vertical Profiles of molecular hydrogen in the troposphere and stratosphere . J. Geophys. Res . 82 , 5907 – 5911 .  

  32. Ehhalt , D. H. , Davidson , J. A. , Cantrell , C. A. , Friedman , I. and Tyler , S . 1989 . The kinetic isotope effect in the reaction of H2 with OH . J. Geophys. Res . 94 , 9831 – 9836 .  

  33. Ehhalt , D. H. , Rohrer , E , Wahner , A. , Prather , M. J. and Blake , D. R . 1998 . On the use of hydrocarbons for the determination of tropo-spheric OH concentrations . J. Geophys. Res . 103 , 18981 – 18997 .  

  34. Ehhalt , D. H. , Rohrer , F. , Schauffler , S. and Pollock , W . 2002 . Tritiated water vapor in the stratosphere: vertical profiles and residence time . J. Geophys. Res . 107 , D24 , 4757 , https://doi.org/10.1029/2001JD001343 .  

  35. Engel , A. , Wetter , T. , Buchholz , U. , Volk , M. , Bonisch , H. and co-authors. 2005. Measurements of molecular hydrogen at the In-stitute for Atmosphare und Umwelt of the J.W. Goethe University Frankfurt. In: Proceedings of the first HyCare meeting Hamburg (ed. M. G. Schultz ), Germany, 16-17 December 2004, Berichte zur Erdsys-temforschung 5, 20 – 22.  

  36. Fabian , P. , Borchers , R. , Weiler , K. H. , Schmidt , U. , Volz , A. and co-authoes. 1979. Simultaneously measured vertical profiles of H2, CH4.; CO, N20, CFC13, and CF2C12 in the mid-latitude stratosphere and troposphere. J. Geophys. Res . 84 , 3149 – 3154.  

  37. Faltings , V. and Harteck , P . 1950. Tritium content of the atmosphere (Der Tritiumgehalt der Atmosphdre). Z. Natutforsch. 5a, 438 – 439.  

  38. Feilberg , K. L. , Johnson , M. S. , Bacak , A. , Rockmann , T. and Nielsen , J. C . 2007 . Relative tropospheric photolysis rates of HCHO and HCDO measured at the European photoreactor facility . J. Phys. Chem. A 111 , 9034 – 9046 .  

  39. Fireman , E. L. and Rowland , F. S . 1961 . An additional measurement of tritium content of atmospheric hydrogen of 1949 . J. Geophys. Res . 66 , 4321 .  

  40. Förstel , H . 1986 . Uptake of elementary tritium by the soil radiation protection . Dosimetty 16 , 75 – 81 .  

  41. Förstel , H . 1988 . HT to HTO conversion in the soil and subsequent tritium pathway: field release data and laboratory experiments . Fusion Tech . 14 , 1241 – 1246 .  

  42. Förstel , H. and Fiihr , F . 1992 . Trockene Deposition von Tritium in den Boden . Forschungszentrum Jiilich Annual Report , pp. 45 – 51 .  

  43. Friedman , I. and Scholz , T. G . 1974 . Isotopic composition Of atmospheric hydrogen, 1967-1969 . J. Geophys. Res . 79 , 785 – 788 .  

  44. Galbally , I. E. and Kirstine , W . 2002 . The production of methanol by flowering plants and the global cycle of methanol . J. Atmos. Chem . 43 , 195 – 229 .  

  45. Gerst , S. and Quay , P. 2000. The deuterium content of atmospheric molecular hydrogen: method and intitial measurements. J. Geophys. Res . 105 , 26433 – 26445.  

  46. Gerst , S. and Quay , P . 2001 . Deuterium component of the global molec-ular hydrogen cycle . J. Geophys. Res . 106 , 5021 – 5031 .  

  47. Glinslci , R. J. and Birks , J. W . 1985 . Yields of molecular hydrogen in the elementary reactions H02±H02 and 0(1D2)+H20 . J. Phys. Chem . 89 , 3449 – 3453 .  

  48. Glueckauf , E. and Kitt , G. P . 1957 . The hydrogen content of atmospheric air at ground level . Q. J. R. Meteorol. Soc . 83 , 522 – 528 .  

  49. Gonsior , B . 1959 . Tritium-Anstieg in atmosphdrischem Wasserstoff . Naturwiss 46 , 201 – 202 .  

  50. Gonsior , B. and Friedman , I . 1962. Tritium und deuterium im atmo-sphdrischen Wasserstoff. Z. Naturforsch. 17a, 1088 – 1091.  

  51. Gonsior , B. , Friedman , I. and Ehhalt , D. H. 1963. Measurements of tri-tium and deuterium concentration in atmospheric hydrogen. J. Geo-phys. Res. 68, 3753 – 3758.  

  52. Gödde , R. , Meuser , K. and Conrad , R. 2000. Hydrogen consumption and carbon monoxide production in soils with different properties. Biol. Fertility Soils, 32 , 129 – 134.  

  53. Gonsior , B. , Friedman , I. and Lindenmayr , G. 1966. New tritium and deuterium measurements in atmospheric hydrogen. Tellus 18, 256 – 261.  

  54. Guenther , A. , Hewitt , C. N. , Erickson , D. , Fall , R. , Geron , C. and co-authors. 1995. A global model of natural volatile organic com-pound emissions. J. Geophys. Res . 100 , 8873 – 8892.  

  55. Guenther , A. , Karl , T. , Harley , P. , Wiedinmyer , C. , Palmer , P. I. and co-authors. 2006. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6, 3181 – 3210.  

  56. Haan , D. , Martinerie , P. and Raynaud , D. 1996. Ice cor data of atmo-spheric carbon monoxide over Antarctica and Greenland during the last 200 years. Geophys. Res. Lett. 23, 2235 – 2238.  

  57. Hagemann , R. , Nief , G. and Roth , E. 1970. Absolute isotopic scale for deuterium analysis of natural waters: absolute D/H ratio for SMOW. Tellus 22, 712 – 715.  

  58. Happell , J. D. , Ostlund , G. and Mason , A. S. 2004. A history of atmo-spheric tritium gas (HT) 1950-2002. Tellus 56B, 183 – 193.  

  59. Harteck , P. and Suess , H. E . 1949 . Der Deuteriumgehalt des freien Wasserstoffs in der Erdatmosphare . Naturwiss . 36 , 218 .  

  60. Hatakeyama , S. , Izumi , K. , Fukuyama , T. , Akimoto , H. and Washida , N . 1991 . Reactions of OH with a -pinene and fl-pinene in air: estimates of CO production from the oxidation of terpenes . J. Geophys. Res . 96 , 947 – 958 .  

  61. Hauglustaine , D. A. and Ehhalt , D. H . 2002 . A three-dimensional model of molecular hydrogen in the troposphere . J. Geophys. Res . 107 , 4330 , https://doi.org/10.1029/2001JDO01156 .  

  62. Heidt , L. E. , Pollock , W. A. , Lueb , R. A. and Krasnec , J. P . 1979. Vertical distributions of stratospheric trace gases at northern latitudes, In: Proceedings of the Symposium on the Budget and Cycles of Trace Gases and Aerosols in the Atmosphere, Commission on Atmospheric Chemistry and Pollution, 12-18 August 1979, Boulder, CO.  

  63. Heikes , B. G. , Chang , W. , Pilson , M. E. Q. , Swift , E. , Singh , H. B. and co-authors. 2002. Atmospheric methanol budget and ocean implication. Global Biogeochem. Cycles 16, 1133, 10.1029/ 2002GB001895.  

  64. Herr , F. L. and Barger , W. R . 1978 . Molecular hydrogen in the near-surface atmosphere and dissolved in waters of the tropical North Atlantic . J. Geophys. Res . 83 , 6199 – 6205 .  

  65. Holton , J. R . 1990 . On the global exchange of mass between the strato-sphere and the troposphere . J. Atmos. Sci . 47 , 392 – 395 .  

  66. Hurst , D. E , Bakwin , P. S. , Zhoa , C. , Davis , K. J. and Teclaw , R. M . 1996 . Landscape-scale surface fluxes of methane and hydro-gen in a North American boreal lowland and wetland boreal for-est . EOS , Trans. Am. Geophys. Un. 77 (Fall Meet. Suppl .), F124–F125 .  

  67. Hurst , D. E , Dutton , G. S. , Romashlcin , P. A. , Wamsley , P. R. , Moore , E L. and co-authors. 1999. Closure of the total hydrogen budget of the northern extratropical lower stratosphere. J. Geophys. Res . 104 , 8191 – 8200.  

  68. Intergovernmental Panel on Climatic Change (IPCC) 1995. Climate Change 1995, Cambridge University Press , Cambridge , UK. Intergovernmental Panel on Climatic Change (IPCC) 2008. Climate Change 2007. Cambridge University Press , Cambridge , UK. International Energy Agency/Standing Group on Long-term Co-operation (IEA/SLT) 2003. Moving to a Hydrogen Economy: Dreams and Realities. International Energy Agency, Paris, France.  

  69. Khalil , M. A. K. and Rasmussen , R. A . 1990 . Global increase of atmo-spheric molecular-hydrogen . Nature 347 , 743 – 745 .  

  70. Koppmann , R. , ed. 2007 . Volatile Organic Compounds in the Atmo-sphere . Blackwell Publishing Ltd , Oxford .  

  71. Krol , M. and Lelieveld , J . 2003 . Can the variability in tropospheric OH be deduced from measurements of 1,1,1-trichloroethane (methyl chlo-roform)? J. Geophys. Res . 108 , 4125 , https://doi.org/10.1029/2002JD002423 .  

  72. Lal , D . 2002. Cosmogenic radionuclides. In: Encyclopedia of Atmo-spheric Sciences Vol. 5 (eds. J. Holton , J. Pyle and J. A. Curry ). Academic Press , 1892-1900 .  

  73. Lallo , M. , Aalto , T. , Laurila , T. and Hatalcica , J . 2006. Measurements of H2 Deposition to Forest Soil in Southern Finland. In: Proceedings of 2nd HyCARE meeting (eds. M. G. Schultz and M. Schwoon ). Laxenburg, Austria, 19-20 Dec. 2005 , pp. 14 – 16.  

  74. Langenfelds , R. L. , Francey , R. J. , Pak , B. C. , Steele , L. P. , Lloyed , J. and co-authors. 2002. Interannual growth rate variations of atmo-spheric CO2 and its 313C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning. Global Biogeochem. Cycles 16, 1048, https://doi.org/10.1029/2001GB001466 .  

  75. Liebl , K. H. and Seiler , W . 1976. CO and 112 Destruction at the Soil Surface in Production and Utilisation of Gases (eds. H. G. Schlegel , G. Gottschalk and N. Pfenning ). E. Goltze KG, Göttingen, Germany , pp. 215 – 229.  

  76. Lies , K.-H . 1988 . Nonlimited automotive exhaust components (Nicht limitierte Automobil-Abgaskomponenten) . Report, Volkswagen AG , Wolfsburg , Germany .  

  77. Lobert , J. M. , Keene , W. C. , Logan , J. A. and Yevich , R . 1999 . Global chlorine emissions from biomass burning: reactive chlorine emissions inventory . J. Geophys. Res . 104 , 8373 – 8389 .  

  78. Luo , Y. , Sternberg , L. , Suda , S. , Kmazawa , S. and Mitsui , A . 1991 . Ex-tremely low D/H ratios of photoproduced hydrogen by cyanobacteria . Plant Cell PhysioL 32 , 897 – 900 .  

  79. Mar , K. A. , McCarthy , M. C. , Connell , P. and Boering , K. A . 2007 . Modeling the photochemical origins of the extreme deuterium enrichment in stratospheric H2 . J. Geophys. Res . 112 , D19302 , 1029/2006JDO07403.  

  80. Martell , E. A . 1963 . On the inventory of artificial tritium and its occurrence in atmospheric methane . J. Geophys. Res . 68 , 3759 – 3769 .  

  81. Martell , E. A. and Ehhalt , D. H . 1974. Hydrogen and carbon compounds in the upper stratosphere and lower mesosphere. In: Proceedings of International Conference on structure, composition, and general cir-culation of the upper and lower atmospheres and possible anthro-pogenic perturbations, Melbourne, Australia, 14-15 January 1974, pp. 223 – 228.  

  82. Mason , A. S. 1977. Atmospheric HT and HTO , 4: estimation of atmo-spheric hydrogen residence time from interhemispheric tritium gas transport. J. Geophys. Res . 82 , 5913 – 5916.  

  83. McLearn , N. and Dong , Z. M . 2002 . Microbial nature of the hydrogen-oxidizing agent in hydrogen-treated soil . Biol. Fertil. Soils 35 , 465 – 469 .  

  84. Millet , B. M. , Jacob , D. J. , Turquety , S. , Hudman , R. C. , Wu , S. and co-authors. 2006. Formaldehyde distribution over North America: impli-cations for satellite retrieval of formaldehyde columns and isoprene emission. J. Geophys. Res . 111 , D24502, 1029/2005JD006853. Miyoshi, A., Hatakeyama, S. and Washida, N. 1994. OH radical initiated photo-oxidation of isoprene: an estimate of global CO production. J. Geophys. Res . 99, 18779 – 18787 .  

  85. Moate , P. J. , Clarke , T. , Davis , L. H and Laby, R. H. 1997. Rumen gases and bloat in grazing dairy cows. J. Agricult. Sci. 129,459-469, https://doi.org/10.1017/S00221859697004930 .  

  86. Montzlca , S. A. , Spivakovsky , C. M. , Butler , J. H. , Elkins , J. W. , Lock , L. T. and co-author. 2000. New observational constraints for atmospheric hydroxyl on global and hemispheric scales. Science 288 , 500 – 503. Muller, J.-F. and Stavrakou, T. 2005. Inversion of CO and NO emissions using the adjoint of the IMAGES model. Atmos. Chem. Phys. 5, 1157 – 1186.  

  87. Nilsson , E. J. K. , Johnson , M. S. , Taketani , F. , Matsumi , Y. , Hurley , M. D. and co-author. 2007. Atmospheric deuterium fractionation: HCHO and HCDO yields in the CH2D0 ± 02 reaction. Atmos. Chem. Phys. 7, 5873 – 5881.  

  88. Novelli , P. C. , Lang , P. M. , Masarie , K. A. , Hurst , D. F. , Myers , R. and co-authors. 1999. Molecular hydrogen in the troposphere: global distribution and budget. J. Geophys. Res . 104 , 30427-30 444. Olivier, J. G. J., Bloos, J. P. J., Berdowski, J. J. M., Visschedijk, A. J. H. and co-authors. 1999. A 1990 global emission inventory of anthro-pogenic sources of carbon monoxide on 10 x 1° developed in the framework of EDGAR/GEIA. Chemosphere Global Change Sci. 1, 1-17, https://doi.org/10.1016/S1465-9972(99)00019-7 .  

  89. Ostlund , G. and Mason , A. S. 1974. Atmospheric HT and HTO, 1: experimental procedures and tropospheric data 1968-72. Tellus 26, 91 – 102.  

  90. Pak , B. C . 2000. Vertical structure of atmospheric trace gases over southeast Australia. Thesis. University of Melbourne, Aus-tralia, 273pp. Available at the Australian Digital Theses Project at http://dtl.unimelb.edu.au/.  

  91. Palmer , P. M. , Abbot , D. S. , Fu , T.-M. , Jacob , D. J. , Chance , K. and co-authors. 2006. Quantifying the seasonal and innterannual variabil-ity of North American isoprene emissions using satellite observa-tions of the formaldehyde column. J. Geophys. Res . 111 , D12315, https://doi.org/10.1029/2005JD006689 .  

  92. Paneth , F. A . 1937 . The chemical composition of the atmosphere . Q. J. R. Meteorol. Soc . 63 , 433 – 438 .  

  93. Prather , M. J . 2003 . An environmental experiment with H2? Science 302 , 581 – 582 .  

  94. Prather , M. and Spivakovsky , C. M. 1990. Tropospheric O H and the lifetimes of hydrochlorofluoromethanes. J. Geophys. Res . 95 , 18723 – 18729.  

  95. Prather , M. , Ehhalt , D. , Dentener , F. , Derwent , R. , Dlugokencky , E. and co-authors. 2001. Atmospheric chemistry and greenhouse gases. In: Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Channge (eds. J. T. Houghton , Y. Ding , D. J. Griggs , M. Noguer , P. J. van der Linden and co-editors ). Cambridge University Press, Cambridge, UK and New York, USA.  

  96. Price , H. , Jaegle , L. , Rice , A. , Quay , P. , Novelli , P. C. and co-authors. 2007. Global budget of molecular hydrogen and its deuterium content: constraints from ground station, cruise, and aircraft observations. J. Geophys Res. 112, D22108, https://doi.org/10.1029/2006JDO08152 .  

  97. Prinn , R. G. , Weiss , R. F. , Miller , B. R. , Huang , J. , Alyea , F. N. and co-authors. 1995. Atmospheric trends and lifetime of CH3CC13 and global OH concentrations. Science 269, 187 – 192.  

  98. Prinn , R. G. , Huang , J. , Weiss , R. F. , Cunnold , D. M. , Fraser , P. J. and co-authors. 2001. Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades. Science 292 , 1882– 1888 .  

  99. Prinn , R. G. , Huang , J. , Weiss , R. F. , Cunnold , D. M. , Fraser , P. J. and co-authors. 2005. Evidence for variability of atmospheric hydroxyl radicals over the past quarter century. Geophys. Res. Lett. 32, L07809, https://doi.org/10.1029/2004GL02228 .  

  100. Quay , P. , Stutsman , J. , Wilbur , D. , Snover , A. , Dlugokencky , E. and co-authors. 1999. The isotopic composition of atmospheric methane. Global Biogeochem.Cycles 13, 445 – 461.  

  101. Rahn , J. , Eiler , J. M. , Kitchen , N. , Fessenden , J. E. and Randerson , J. T . 2002a. Concentration and dD of molecular hydrogen in boreal forests: ecosystem scale systematics of atmospheric H2. Geophys. Res. Lett. 29, 101029/2002GL015118.  

  102. Rahn , T. , Kitchen , N. and Eiler , J . 2002b . D/H ratios of atmospheric H2 in urban air: results using new methods for analysis of nano-molar H2 samples . Geochim. Cosmochim. Acta 66 , 2575 – 2481 .  

  103. Rahn , T. , Eiler , J. M. , Boering , K. A. , Wennberg , P.O. , McCarthy , M. C. and co-author. 2003. Extreme deuterium enrichment in stratospheric hydrogen and the global atmospheric budget of H2. Nature 424, 918 – 921.  

  104. Rhee , T. S. , Brenninkmeijer , C. A. M. and Riiclunann , T . 2006a . The overwhelming role of soils in the global atmospheric hydrogen cycle . Atmos. Chem. Phys . 6 , 1611 – 1625 .  

  105. Rhee , T. S. , Brenninkmeijer , C. A. M. , Bra , M. and Briihl , C . 2006b . Isotopic composition of H2 from CH4 oxidation in the stratosphere and the troposphere . J. Geophys, Res . 111 , D23303 , https://doi.org/10.1029/2005JD006760 .  

  106. Rhee , T. S. , Brenninkmeijer , C. A. M. and Röckmann , T . 2007. Hydrogen isotope fractionation in the photolysis of formaldehyde. Atmos. Chem. Phys. Discuss. 7 , 12715 – 12750.  

  107. Röckmann , T. , Rhee , T. S. , Engel , A . 2003 . Heavy hydrogen in the stratosphere . Atmos. Chem. Phys . 3 , 2015 – 2023 .  

  108. Rohs , S. , Schiller , C. , Riese , M. , Engel , A. , Schmidt , U. and co-authors. 2006. Long-term changes of methane and hydrogen in the stratosphere in the period 1978-3003 and their impact on the abun-dance of stratospheric water vapor. J. Geophys. Res . 111 , D14315, 1029/2005JDO06877.  

  109. Sander , S. P. , Friedl , R. R. , Golden , D. M. , Kurylo , M. J. , Moortgat , G. K. and co-authors. 2006. Chemical kinetics and photochemical data for use in atmospheric studies. Evaluation No. 15. JPL Publication 06-2. NASA/Jet Propulsion Laboratory, Pasadena, CA.  

  110. Sanderson , M. G . 1996 . Biomass of termites and their emissions of methane and carbon dioxide: a global data base . Global Biogeochem. Cycles 10 , 543 – 557 .  

  111. Sanderson , M. G. , Collins , W. J. , Derwent , R. G. and Johnson , C. E . 2003 . Simulation of global hydrogen levels using a Lagrangian three-dimensional model . J. Atmos. Chem . 46 , 15 – 28 .  

  112. Sanhueza , E. , Dong , Y. , Scharffe , D. , Lobert , J. M. and Crutzen , P. J . 1998 . Carbon monoxide uptake by temperate forest soils: the effects of leaves and humus layers . Tellus 50B , 51 – 58 .  

  113. Saunders , S. M. , Jenlcin , M. E. , Derwent , R. G. and Pilling , M. J . 2003 . Protocol for the development of the Master Chemical Mechanism, MCM v3, Part A: troposheric degradation of non-aromatic volatile organic compounds . Atmos. Chem. Phys . 3 , 161 – 180 .  

  114. Schiegl , W. E. and Vogel , J. C . 1970 . Deuterium content of organic matter . Earth Planet. Sci. Lett . 7 , 307 – 313 .  

  115. Schmidt , U . 1974 . Molecular hydrogen in atmosphere. Tellus 26,78-90. Schmidt, U. 1978. The latitudinal and vertical distribution of molecular hydrogen in the troposphere. J. Geophys. Res . 83 , 941 – 946 .  

  116. Schmidt , U. and Seiler , W . 1970 . A new method for recording molecular hydrogen in atmospheric air. J. Geophys. Res . 75/9, 1713-1716. Schmidt, U. and Wetter, T. 2002. Tropospheric chemistry and compo-sition: H2. In: Encyclopedia of Atmospheric Sciences Vol. 6 (eds. J. Holton , J. Pyle and J. A. Curry ). Academic Press, London, 2397-2402. Schmidt, U., Kulessa, G. and Roth, E. P. 1980. The atmospheric H2 cycle. In: Proceedings of the NATO Advanced Study Institute on Atmospheric Ozone (ed. A. C. Ailcin ). U.S. Department of Transportation, Report No. FAA-EE-80-20. Aldeias das Acoteias, Portugal, pp. 307-322.  

  117. Scholz , T. G. , Ehhalt , D. H. , Heidt , L. E. and Martell , E. A. 1970. Water vapor, molecular hydrogen, methane, and tritium concentrations near the stratopause . J. Geophys. Res . 75 , 3049 – 3054 .  

  118. Schuler , S. and Conrad , R . 1990 . Soils contain two different activities for oxidation of hydrogen. FEMS Micro biol. EcoL 73 , 77 – 84. Schuler, S. and Conrad, R. 1991. Hydrogen oxidation activities in soil as influenced by pH, temperature, moisture, and season. Biol. Fertility Soils 12 , 127 – 130 .  

  119. Schultz , M. G. , Diehl , T. , Brasseur , G. P. and Zittel , W . 2003 . Air pol-lution and climate-forcing impacts of a global hydrogen economy . Science 302 , 624 – 627 .  

  120. Schultz , M. G. , Heil , A. , Hoelzemann , J. J. , Spessa , A. , Thonicke , K. and co-author. 2008. Global wildland fire emissions from 1960 to 2000. Global Biogeochem. Cycles 22, GB2002, https://doi.org/10.1029/2007GB003031 .  

  121. Seiler , W. and Conrad , R . 1987 . Contribution of tropical ecosystems to the global budgets of trace gases, especially CH4, H2, CO and N20 . In: The Geophysiology of Amazonia (ed. R. E. Dickinson ). John Wiley & Sons , New York , pp. 133 – 157 .  

  122. Seiler , W. and Schmidt , U . 1974. Dissolved nonconservative gases in seawater. In: The Sea Vol. 5: Marine Chemistry (ed. E. D. Goldberg ). J. Wiley & Sons, Inc., New York , 219 – 243.  

  123. Seiler , W. and Zankl , H . 1975 . The trace gases CO and H2 above Munich (Die Spurengase CO und H2 iiber Miinchen) . Umschau 75 , 735 – 736 .  

  124. Seiler , W. , Muller , F. and Oeser , H . 1978 . Vertical distribution of chlo-rofluoromethanes in the upper troposphere and lower stratosphere . Pure AppL Geophys . 116 , 554 – 566 .  

  125. Simmonds , P. G. , Derwent , R. G. , O'Doherty , S. , Ryall , D. B. , Steele , L. P. and co-authors. 2000. Continuous high-frequency observations of hydrogen at the Mace Head Baseline — atmospheric monitoring station over the 1994-1998 period. J. Geophys. Res . 105/D10, 12 105 – 12121.  

  126. Singh , H. B. , Salas , L. J. , Chatfield , R. B. , Czech , E. , Fried , A. and co-authors. 2004. Analysis of the atmospheric distribution, sources, and sinks of oxygenated volatile orcganic chemicals based on mea-surements over the Pacific during TRACE-P. J. Geophys. Res . 109 , D15507, https://doi.org/10.1029/2003JDO03883 .  

  127. Smith-Downey , N. V. , Randerson , J. T. and Eiler , J. M . 2006 . Tempera-ture and moisture dependence of soil H2 uptake measured in the labo-ratory . Geophys. Res. Lett . 33 , L14813 , https://doi.org/10.1029/2006GL026749 .  

  128. Smolenslci , W. J. and Robinson , J. A . 1988 . In situ rumen hydrogen con-centrations in steers fed eight times daily, measured using a mercury reduction detector . FEMS MicrobioL Ecol . 53 , 95 – 100 .  

  129. Sone , Y. , Tanida , S. , Matsubara , K. , Kojima , Y. , Kato , N. and co-authors. 2000. Everyday breath hydrogen excretion profile in Japanese young female students. J. Physiol. AnthropoL 19, 229 – 237.  

  130. Spivalcovsky , C. M. , Logan , J. A. , Montzlca , S. A. , Ballcanski , Y. J. , Foreman-Fowler , M. and co-authors. 2000. Three-dimensional cli-matological distribution of tropospheric OH: update and evaluation. J. Geophys. Res . 105 , 8931 – 8980.  

  131. Steinbacher , M. , Fischer , A. , Vollmer , M. K. , Buchmann , B. , Reimann , S. and co-authors. 2007. Perennial observations of molecular hydrogen (H2) at a suburban site in Switzerland. Atmos. Env. 41, 2111 – 2124.  

  132. Steiner , A. H. and Goldstein , A. L . 2007 . Biogenic VOCs, In: Volatile Organic Compounds in the Atmosphere (ed . R. Koppmann). Black-well Publishing Ltd , Oxford , 82 – 128 .  

  133. Sugimoto , A. , Inoue , T. , Tayasu , I. , Miller , L. , Takeichi , S. and co-authors. 1998. Methane and hydrogen production in a termite-symbiont system. EcoL Res. 13, 241 – 257.  

  134. Taatjes , C. A . 1999 . Infrared frequency-modulation measurements of absolute rate coefficients for Cl ± HD -> HC1(DC1) D(H) between 295 and 700K . Chem. Phys. Lett . 306 , 33 – 40 .  

  135. Talukdar , R. K. and Ravishanlcara , A. R . 1996 . Rate coefficients for 0(1D) ± H2, D2, HD reactions and H atom yield in 0(1D) ± HD reaction . Chem. Phys. Lett . 243 , 177 – 183 .  

  136. Talukdar , R. K. , Gierczalc , T. , Goldfarb , L. , Rudich , Y. , Madhava Rao , B. S. and co-authors. 1996. Kinetics of hydroxyl radical reaction with isotopically labelled hydrogen. J. Phys. Chem. 100, 3037 – 3043.  

  137. Tie , X. , Guenther , A. and Holland , E . 2003 . Biogenic methanol and its impacts on tropospheric oxidants . Geophys. Res. Lett . 30 , 1881 , 1029/2003GL017167.  

  138. Trenberth , K. E and Guillemot , G. J . 1994. The total mass of the atmo-sphere. J. Geophys. Res . 99 , 23079 – 23088.  

  139. Tromp , T. K. , Shia , R.L. , Allen , M. , Eiler , J. M. and Yung , Y. L. 2003. Potential environmental impact of a hydrogen economy on the stratosphere. Science 300 , 1740– 1742 .  

  140. Vollmer , M. K. , Juergens , N. , Steinbacher , M. , Reimann , S. , Weilen-mann , M. and co-authors. 2007. Road vehicle emissions of molec-ular hydrogen (H2) from a tunnel study. Atmos. Env. 41, 8355 – 8369.  

  141. Warneck , P . 1988 . Chemistry of the Natural Atmosphere . Academic Press Inc., San Diego , CA .  

  142. Warwick , N. J. , Beklci , S. , Nisbet , E. G. and Pyle , J. A . 2004 . Impact of a hydrogen economy on the stratosphere and tropo-sphere studied in a 2-D model . Geophys. Res. Lett . 31 , L05107 , https://doi.org/10.1029/2003GL019224 .  

  143. Williams , R. T. and Bainbridge , A. E . 1973 . Dissolved CO, CH4, and H2 in the Southern Ocean . J. Geophys. Res . 78 , 2691 – 2694 .  

  144. Wittrock , E , Richter , A. , Oetjen , H. , Burrows , J. P. , Kanakidou , M. and co-authors. 2006. Simultaneous global observations of glyoxal and formaldehyde from space. Geophys. Res. Lett. 33, L16804, https://doi.org/10.1029/2006GL026310 .  

  145. Xiao , X. , Prinn , R. G. , Simmonds , P. G. , Steele , L. R , Novelli , P. C. and co-authors. 2007. Optimal estimation of the soil uptake of molec-ular hydrogen from the Advanced Global Atmospheric Gases Ex-periments and other measurements. J. Geophys. Res . 112 , D07303, https://doi.org/10.1029/2006JD007241 .  

  146. Yevich , R. and Logan , J. A . 2003 . An assessment of biofuel use and burn-ing of agricultural waste in the developing world . Global Biogeochem. Cycles 17 , 1095 , https://doi.org/10.1029/2002GB001952 .  

  147. Yonemura , S. , Kawashima , S. and Tsuruta , H . 1999 . Continuous mea-surements of CO and H2 deposition velocities onto an andisol: uptake control by soil moisture . Tellus 51B , 688 – 700 .  

  148. Yonemura , S. , Yokozawa , M. , Kawashima , S. and Tsuruta , H . 2000a . Model analysis of the influence of gas diffusivity in soil on CO and H2 uptake . Tellus 52B , 919 – 933 .  

  149. Yonemura , S. , Kawashima , S. and Tsuruta , H . 2000b . Carbon monoxide, hydrogen, and methane uptake by soils in a temperate arable field and a forest . J. Geophys. Res . 105 , 14347-14 362 .  

  150. Zander , R. , Demoulin , Ph. , Ehhalt , D. H. , Schmidt , U. and Rinsland , C. P. 1989. Secular increase of the total vertical column abundance of carbon monoxide above central Europe since 1950. J. Geophys. Res . 94 , 11021 – 11028.  

  151. Zellner , R. , Wagner , G. and Himme , B. 1980. H2 formation in the reaction of 0(1D) with H20. J. Phys. Chem. 84, 3196 – 3198.  

  152. Zimmerman , P. R. , Greenberg , J. P. , Wandiga , S.O. and Crutzen , P. J. 1982. Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218, 563 – 565.  

  153. Zöger , M. , Engel , A. , McKenna , D. S. , Schiller , C. , Schmidt , U. and co-authors. 1999. Balloon-borne in situ measurements of stratospheric H20, CH4, and H2 at midlatitudes. J. Geophys. Res . 104 , 1817– 1825 .  

comments powered by Disqus