Start Submission Become a Reviewer

Reading: Vertically resolved dust optical properties during SAMUM: Tinfou compared to Ouarzazate

Download

A- A+
Alt. Display

Original Research Papers

Vertically resolved dust optical properties during SAMUM: Tinfou compared to Ouarzazate

Authors:

Birgit Heese ,

Leibniz Institute for Tropospheric Research (IfT); Meteorological Institute, Ludwig-Maximilians-Universität, DE
X close

Dietrich Althausen,

Leibniz Institute for Tropospheric Research (IfT), DE
X close

Tilman Dinter,

Institute for Environmental Research, University of Bremen, DE
X close

Michael Esselborn,

Deutsches Zentrum für Luft– und Raumfahrt, Institute for Atmospheric Physics, DE
X close

Thomas Müller,

Leibniz Institute for Tropospheric Research (IfT), DE
X close

Matthias Tesche,

Leibniz Institute for Tropospheric Research (IfT), DE
X close

Matthias Wiegner

Meteorological Institute, Ludwig-Maximilians-Universität, DE
X close

Abstract

Vertical profiles of dust key optical properties are presented from measurements during the Saharan Mineral Dust Experiment (SAMUM) by Raman and depolarization lidar at two ground-based sites and by airborne high spectral resolution lidar. One of the sites, Tinfou, is located close to the border of the Sahara in Southern Morocco and was the main in situ site during SAMUM. The other site was Ouarzazate airport, the main lidar site. From the lidar measurements the spatial distribution of the dust between Tinfou and Ouarzazate was derived for 1 d. The retrieved profiles of backscatter and extinction coefficients and particle depolarization ratios show comparable dust optical properties, a similar vertical structure of the dust layer, and a height of about 4 km asl at both sites. The airborne cross-section of the extinction coefficient at the two sites confirms the low variability in dust properties. Although the general picture of the dust layer was similar, the lidar measurements reveal a higher dust load closer to the dust source. Nevertheless, the observed intensive optical properties were the same. These results indicate that the lidar measurements at two sites close to the dust source are both representative for the SAMUM dust conditions.

How to Cite: Heese, B., Althausen, D., Dinter, T., Esselborn, M., Müller, T., Tesche, M. and Wiegner, M., 2009. Vertically resolved dust optical properties during SAMUM: Tinfou compared to Ouarzazate. Tellus B: Chemical and Physical Meteorology, 61(1), pp.195–205. DOI: http://doi.org/10.1111/j.1600-0889.2008.00404.x
  Published on 01 Jan 2009
 Accepted on 30 Oct 2008            Submitted on 9 Jul 2008

References

  1. Althausen , D. , Muller , D. , Ansmann , A. , Wandinger , U. , Hube , H. and co-authors. 2000. Scanning 6-wavelength 11-channel aerosol lidar. J. Atmos. Ocean. TechnoL 17 , 1469 – 1482 .  

  2. Ansmann A. , Wandinger , U. , Riebesell , M. , Weiticamp , C. and Michaelis , W . 1992 . Independent measurement of extinction and bacicscatter pro-files in cirrus clouds by using a combined Raman elastic-backscatter lidar . App/. Opt . 31 , 7113 – 7131 .  

  3. Ansmann A. , Bilisenberg , J. , Chaikovsky , A. , Comeron , A. , Eckhardt , S. and co-authors. 2003. Long-range transport of Saharan dust to northern Europe: the 11-16 October 2001 ourtbreak observed with EARUNET. J. Geophys. Res . 108 , https://doi.org/10.1029/2003JDO03757 .  

  4. Ansmann A. , Tesche , M. , Knipperts , P. , Bierwirth , E. , Althausen , D. and co-authors. 2008. Vertical profiling of convective dust plumes in southern Morocco during SAMUM. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00384.x .  

  5. Balis , D. S. , Amiridis , V. , Nickovic , S. , Papayannis , A. and Zerefos , C . 2004 . Optical properties of Saharan dust layers as detected by a Raman lidar at Thessaloniki, Greece . Geoph. Res. Lett . 31 , 13104 , https://doi.org/10.1029/2004GL019881 .  

  6. Bierwirth , E. , Wendisch , M. , Ehrlich , A. , Heese , B. , Tesche , M. and co-authors. 2008. Spectral surface albedo over Morocco and its impact on the radiative forcing of Saharan dust. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00395.x .  

  7. Cairo , F. , Donfrancesco , G. D. , Adriani , A. , Pulvirenti , L. and Fierli , E 1999 . Comparison of various linear depolarization parameters mea-sured by lidar . AppL Opt . 38 , 4425 – 4432 .  

  8. Chazette , P. , Sanak , J. and Dulac , F . 2007 . New approach for aerosol profiling with a lidar onboard an ultralight aircraft: application to the African Monsoon Multidisciplinary Analysis . Environ. Sci. TechnoL 41 , 8335 – 8341 , https://doi.org/10.1021/es070343y .  

  9. Draxler , R. R. and Rolph , G. D . 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory), Model access via NOAA ARL READY website: http://www.arl.noaa.gov/ready/ hysplit4.html, NOAA Air Resources Laboratory, Silver Spring, MD.  

  10. Esselborn , M. , Wirth , M. , Fix , A. , Weinzierl , B. , Rasp , K. and co-authors. 2008. Spatial distribution and optical properties of Saharan dust ob-served by airborne high spectral resolution lidar during SAMUM 2006. Tellus 61B, doi: https://doi.org/10.1111/j.1600-0889.2008.00394.x .  

  11. Fernald , E G . 1984 . Analysis of atmospheric lidar observations . AppL Opt . 23 , 652 – 653 .  

  12. Freudenthaler , V. , Esselborn , M. , Wiegner , M. , Heese , B. , Tesche M. and co-authors. 2008. Depolarization-ratio profiling at several wave-lengths in pure Saharan dust during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00396.x .  

  13. Gibert , F. , Cuesta , J. , Yano , J.I. , Arnault , N. and Flamant , P. H. 2007. On the correlation between convective plume updrafts and downdrafts, lidar reflectivity and depolarization ratio. Boundary-Layer MeteoroL 125, 553-573, https://doi.org/10.1007/s10546-007-9205-6 .  

  14. Hamonou , E. , Chazette , P. , Balis , D. , Dulac , E , Schneider , X. and co-authors. 1999. Characterization of the vertical structure of Saharan dust export to the Mediterranean basin. J. Geophys. Res . 104 , 22257-22 270.  

  15. Haywood , J. M. , Francis , P. , Osborne , S. R. , Glew , M. , Loeb , N. and co-authors. 2003. Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE: 1. Solar spectrum. J. Geophys. Res . 108 , 8577, https://doi.org/10.1029/2002J1D002687 .  

  16. Heese , B. and Wiegner , M . 2008. Vertical aerosol profiles from Raman-polarization lidar observations during the dry sea-son AMNIA field campaign. J. Geophys. Res . 113 , DO0C11, https://doi.org/10.1029/2007JD009487 .  

  17. Heese , B. , Freudenthaler , V. , Seefeldner , M. and Wiegner , M . 2002. POLIS—A new POrtable LIdar System for ground-based and airborne measurements of aerosols and clouds. In: Lidar Remote Sensing in Atmospheric and Earth Sciences (eds. L. R. Bissonnette , G. Roy and G. Vallee ). Defence Research and Development, Canada—Valcartier, Val—Belair, Quebec, Canada , 71 – 74.  

  18. Heese , B. , Freudenthaler , V. , Seefeldner , M. , Kosmale , M. and Wiegner , M . 2004 . First results from the portable lidar system POLIS . In: Proceedings of the International Laser Radar Conference, Matera, Italy, ESA SP- 561 , 79 – 82 .  

  19. Heintzenberg , J . 2008. The SAMUM-1 experiment over Southern Mo-rocco: overview and introduction. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00403.x .  

  20. Holben , B. N. , Tanre , D. , Smirnov , A. , Eck , T. F. , Slutsker , I. and co-authors. 2001. An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J. Geophys. Res . 106 , 12067-12 097.  

  21. von Hoyningen-Huene , W. and Posse , P. 1997. Non-sphericity of aerosol particles and their contribution to radiative forcing. J. Quant. Spec-trosc. Rad. Trans. 57, 651 – 668.  

  22. von Hoyningen-Huene , W. , Dinterfnm T. , Kolchanovsky , A. A. , Burrows , J. P. and Diouri , M. 2008. Measurements of desert dust optical characteristic at Porte au Sahara during SAMUM. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00405.x .  

  23. Johnson , B. T. , Heese , B. , Mc Farlane , S. , Chazette , P. , Jones , A. and co-authors. 2008. Vertical distribution and radiative effects of mineral dust and biomass burning arosol over West Africa during DABEX. J. Geophys. Res . 113 , DO0C12, https://doi.org/10.1029/2008JD009848 .  

  24. Kahn , R. , Petzold , A. , Wendisch , M. , Bierwirth , E. , Dinter , T. and co-authors. 2008. Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space-based multi-angle imaging. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00398.x .  

  25. Kandler , K. , Schiitz , L. , Deutscher , C. , Ebert , M. , Hofmann , H. and co-authors. 2008. Size distribution, mass concentration, chemical and mineralogical composition, and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00385.x .  

  26. Knippertz , P. , Ansmann , A. , Althausen , D. , Muller , D. , Tesche , M. and co-authors. 2008. Dust mobilization and transport in the Northern Sahara during SAMUM 2006 — A meteorological overview. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00380.x .  

  27. Leon , J.-F. , Tame' , D. , Pelon , J. , Kaufman , Y. J. , Haywood , J. M. and co-authors. 2003. Profiling of a Saharan dust outbreak based on a synergy between active and passive remote sensing. J. Geophys. Res . 108 , https://doi.org/10.1029/2002JD002774,8575 .  

  28. Mattis , I. , Ansmann , A. , Muller , D. , Wandinger , U. and Althausen , D. 2002. Dual-wavelength Raman lidar observations of the extinction-to-bacicscatter ratio of Saharan dust. Geoph. Res. Lett. 29, 1306, https://doi.org/10.1029/2002GL014721 .  

  29. Muller , D. , Ansmann , A. , Mattis , I. , Tesche , M. , Wandinger , U. and co-authors. 2007. Aerosol-type-dependent lidar ratios observed with Raman lidar. J. Geophys. Res . 112 , https://doi.org/10.1029/2006JDO08292 .  

  30. Murayama T. , Okamoto , H. , Kaneyasu , N. , Kamataki , H. and Miura , K . 1999 . Application of lidar depolarization measurement in the atmospheric boundary layer: effects of dust and sea-salt particles . J. Geophys. Res . 104 , 781 – 792 .  

  31. Osborne , S. R. , Johnson , B. T. , Haywood , J. M. , Baran , A. J. , Harrison , M. A. J. and co-authors. 2008. Physical and optical properties of min-eral dust aerosol during the Dust and Biomass-burning Experiment. J. Geophys. Res . 113 , DO0CO3, https://doi.org/10.1029/2007JD009551 .  

  32. Pelon , J. , Mallet , M. , Mariscal , A. , Goloub , P. , Tanre , D. and co-authors. 2008. MICROLIDAR observations of biomass burning aerosol (Benin) during AMMA-SOP 0/DABEX. J. Geophys. Res . 113 , https://doi.org/10.1029/2008JD009976 .  

  33. Platt , C. M. R . 1978 . Lidar bacicscattering from horizontally oriented ice crystal plates . J. AppL Meteorol . 17 , 482 – 488 .  

  34. Prospero , J. M . 1999. Long-term measurements of the transport of African mineral dust to the southeastern United States: implications for regional air quality. J. Geophys. Res . 104 , 15917 – 15927.  

  35. Prospero , J. M. and Carlson , T. N . 1972 . Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean . J. Geophys. Res . 77 , 5255 – 5265 .  

  36. Prospero , J. M. , Glaccum , R. A. and Nees , R. T . 1981 . Atmospheric transport of soil dust from Africa to South America . Nature 289 , 570 – 572 .  

  37. Redelsperger , J.-L. , Thorncroft , C. D. , Diedhiou , A. , Lebel , T. , Parker , D. J. and co-authors. 2006. African Monsoon Multidisciplinary Analysis: an International Research Project and Field Campaign . Bull. Am. MeteoroL Soc . 87 , 1739– 1746 .  

  38. Reid , J. S. , Kinney , J. E. , Westphal , D. L. , Holben , B. N. , Welton , E. J. and co-authors. 2003. Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE). J. Geophys. Res . 108 , https://doi.org/10.1029/2002JD002493,8586 .  

  39. Sokolilc , I. N. , Winker , D. M. , Bergametti , G. , Gillette , D. A. and co-authors. 2001. Introduction to special section: outstanding problems in quantifying the radiative impacts of mineral dust. J. Geophys. Res . 106 , 18015 – 18028.  

  40. Tanre , D. , Haywood , J. M. , Pelon , J. , Leon , J. F. , Chatenet , B. and co-authors. 2003. Measurement and modeling of the Saharan dust ra-diative impact: overview of the SaHAran Dust Experiment (SHADE). J. Geophys. Res . 108 , 8574, https://doi.org/10.1029/2002JD003273 .  

  41. Tesche , M. , Ansmann , A. , Muller , D. , Althausen , D. , Heese , B. and co-authors. 2008. Vertical profiling of Saharan dust with Raman lidars and airborne high-spectral-resolution lidar during SAMUM. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00390.x .  

  42. Wendisch , M. and von Hoyningen-Huene , W . 1994 . Possibility of refrac-tive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements . Atmos. Environ . 28 , 785 – 795 .  

comments powered by Disqus