Start Submission Become a Reviewer

Reading: Investigation of parameters controlling the soil sink of atmospheric molecular hydrogen

Download

A- A+
Alt. Display

Original Research Papers

Investigation of parameters controlling the soil sink of atmospheric molecular hydrogen

Authors:

S. Schmitt,

Institut für Umweltphysik, DE
X close

A. Hanselmann,

Institut für Umweltphysik, DE
X close

U. Wollschläger,

Institut für Umweltphysik, DE
X close

S. Hammer,

Institut für Umweltphysik, DE
X close

I. Levin

Institut für Umweltphysik, DE
X close

Abstract

Enclosure measurements have been performed on a bare mineral soil at an experimental field site near Heidelberg, Germany. From observed molecular hydrogen (H2) mixing ratio changes in the enclosure, deposition velocities were calculated ranging from 8.4 × 10−3 to 8.2 × 10−2 cm s−1 and with an annual mean value of 3.1 × 10−2 cm s−1. In the studied range of 2– 27 ◦C, the uptake showed a significant temperature dependence. However, this turned out not to be the primary driving mechanism of the uptake flux. Soil moisture content, co-varying with temperature, was identified as the major parameter being responsible for the diffusive permeability of H2 in the soil and the final rate of H2 uptake. A simple Millington–Quirk diffusion model approach could largely explain this behaviour and yielded a diffusion path length of H2 in the studied soil of only 0.2–1.8 cm, suggesting that total H2 consumption occurs within the first few centimetres of the soil. The diffusion model, when applied to continuous measurements of soil moisture content, atmospheric pressure, temperature and the mixing ratio of H2 in the atmosphere, could largely reproduce the measured deposition flux densities, assuming a mean thickness of the diffusion path length of 0.7 cm.

How to Cite: Schmitt, S., Hanselmann, A., Wollschläger, U., Hammer, S. and Levin, I., 2009. Investigation of parameters controlling the soil sink of atmospheric molecular hydrogen. Tellus B: Chemical and Physical Meteorology, 61(2), pp.416–423. DOI: http://doi.org/10.1111/j.1600-0889.2008.00402.x
  Published on 01 Jan 2009
 Accepted on 24 Oct 2008            Submitted on 17 Jun 2008

References

  1. Bisswanger , H . 1999 . Enzyme Kinetics . Wiley-VHC , Weinheim , Ger-many .  

  2. Conrad , R . 1996 . Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N20 and NO) . MicrobioL Rev. 60 , 609 – 640 .  

  3. Conrad , R. and Seiler , W . 1981 . Decomposition of atmospheric hydrogen by soil microorganisms and soil enzymes . Soil Biol. Biochem . 34 , 43 – 49 .  

  4. Conrad , R. and Seiler , W . 1985 . Influence of temperature, moisture, and organic carbon on the flux of H2 and CO between soil and atmosphere: field studies in subtropical regions . J. Geophys. Res . 90 , 5699 – 5709 .  

  5. Crank , J . 1975 . Mathematics of Diffusion . Oxford University Press, London , UK .  

  6. Guo , R. and Conrad , R . 2008 . Extraction and characterization of soil hydrogenases oxidizing atmospheric hydrogen . Soil Biol. Biochem . 40 , 1149 – 1154 .  

  7. Hammer , S . 2008 . Quantification of regional H2 sources and sinks de-rived from multi tracer analyses of continuous atmospheric measure-ments . Ph.D. Thesis , University of Heidelberg .  

  8. Haugiustaine , D. A. and Ehhalt , D. H . 2002 . A three dimensional model of molecular hydrogen in the troposphere . J. Geophys. Res . 107 , 4330 .  

  9. Lallo , M. R , Aalto , T. , Laurila , T. and Hatalcica , J . 2008 . Sesonal varia-tions in hydrogen deposition to boreal forest soil in southern Finland . Geophys. Res. Lett . 35 , L04402 .  

  10. Lide , D. and Frederilcse , H . 1995 . CRC Handbook of Chemistry and Physics . CRC Press, Boca Raton , FL .  

  11. Liebl , K. and Seiler , W . 1976. CO and H2 destruction at the soil surface. In: Microbial production and utilization of gases (eds H. G. Schlegel et al). E. Goitze, Gottingen, Germany, 215 – 229.  

  12. Millington , R. J. and Quirk , J. P . 1959 . Permeability of porous media . Nature 183 , 387 – 388 .  

  13. Novelli , P. C. , Lang , P. M. , Masarie , D. F. , Myers , R. and co-authors. 1999. Molecular hydrogen in the troposphere: global distribution and budget. J. Geophys. Res . 104 , 427 – 444.  

  14. Rhee , T. S. , Brenniniuneijer , C. and Röckmann , T . 2006 . The over-whelming role of soils in the global atmospheric hydrogen cycle . Atmos. Chem. Phys . 6 , 1611 – 1625 .  

  15. Robinson , D. A. , Jones , S. B. , Wraith , J. M. , Or , D. and Friedman , S. P. 2003. A review of advances in dielectric and electrical conductivity measurement in soils using time-domain reflectometry. Vadose Zone J. 2, 444 – 475.  

  16. Roth , K. R. , Schulin , R. , Filthier , H. and Attinger , W . 1990 . Calibra-tion of time domain reflectometry for water content measurement using a composite dielectric approach . Water Resour Res . 67 , 2267 – 2273 .  

  17. Schultz , M. G. , Diehl , T. , Brasseur , G. P. and Zittel , W . 2003 . Air pol-lution and climate-forcing impacts of a global hydrogen economy . Science 302 , 624 – 627 .  

  18. Smith-Downey , N. , Randerson , T. and Eiler , J. M . 2006 . Temperature and moisture dependence of soil H2 uptake measured in the laboratory . J. Geophys. Res . 33 , L14813 .  

  19. Tromp , T. K. , Shia , R. L. , Allen , M. and Eiler , J. M . 2003 . Potential environmental impact of a hydrogen economy on the stratosphere . Science 300 , 1740 – 1742 .  

  20. Voet , D. , Voet , J. and Pratt , C . 2006 . Fundamentals of Biochemistry . John Wiley and Sons, New York , NY .  

  21. Yonemura , S. , Yokozawa , M. , Kawashima , S. and Tsuruta , H . 1999 . Continuous measurements of CO and H2 deposition velocities onto an andisol: uptake control by soil moisture . Tellus 51B , 688 – 700 .  

  22. Yonemura , S. , Yokozawa , M. , Kawashima , S. and Tsuruta , H . 2000a . Model analysis of the influence of gas diffusivity in soil and on CO and H2 uptake . Tellus 52B , 919 – 933 .  

  23. Yonemura , S. , Kawashima , S. and Tsuruta , H . 2000b . Carbon monoxide, hydrogen, and methane uptake by soils in a temperate arable field and a forest . J. Geophys. Res . 105 , 347 – 362 .  

comments powered by Disqus