Start Submission Become a Reviewer

Reading: Are response function representations of the global carbon cycle ever interpretable?

Download

A- A+
Alt. Display

Original Research Papers

Are response function representations of the global carbon cycle ever interpretable?

Authors:

Sile Li ,

Lancaster Environment Centre, Lancaster University, GB
X close

Andrew J. Jarvis,

Lancaster Environment Centre, Lancaster University, GB
X close

David T. Leedal

Lancaster Environment Centre, Lancaster University, GB
X close

Abstract

Response function models are often used to represent the behaviour of complex, high order global carbon cycle (GCC) and climate models in applications which require short model run times. Although apparently black-box, these response function models need not necessarily be entirely opaque, but instead may also convey useful insights into the properties of the parent model or process. By exploiting a transfer function (TF) framework to analyse the Lenton GCC model, this paper attempts to demonstrate that response function representations of GCC models can sometimes also provide structural information on the parent model from which they are identified and calibrated. We take a fifth-order TF identified from the impulse response of the Lenton model atmospheric burden, and decompose this to show how it can be re-expresses in a generic five-box form in sympathy with the structure of the parent model.

How to Cite: Li, S., Jarvis, A.J. and Leedal, D.T., 2009. Are response function representations of the global carbon cycle ever interpretable?. Tellus B: Chemical and Physical Meteorology, 61(2), pp.361–371. DOI: http://doi.org/10.1111/j.1600-0889.2008.00401.x
  Published on 01 Jan 2009
 Accepted on 22 Sep 2008            Submitted on 7 May 2008

References

  1. Caldeira , K. , Hoffert , M. I. and Jain , A . 2000 . Simple ocean carbon models . In: The Carbon Cycle (eds T. M. L. Wigley and D. S. Schimel).Cambridge University Press , Cambridge , 199 – 211 .  

  2. Dowell , E. H . 1996 . Eigenmode analysis in unsteady aerodynamics: reduced order models . AIAA J . 34 , 1578 – 1588 .  

  3. den Elzen , M. G. J. and Lucas , P. 2005. The FAIR model: a tool to analyse environmental and costs implications of regimes of future commitments. Environ. Modell. Assess. 10, 115 – 134.  

  4. Enting , I. G . 1990 . Ambiguities in the calibration of carbon cycle models . Inverse Problems 6 , L39–L46 .  

  5. Enting , I. G . 2007 . Laplace transform analysis of the carbon cycle . Environ. Modell. Software 22 , 1488 – 1497 .  

  6. Enting , I. G. and Trudinger , C. M . 2002 . Modelling earth system change: I . Validating parameterisations for attribution calculations. CSIRO Atmospheric Research Technical Paper 56 .  

  7. Gamier , H. , Mensler , M. and Richard , A. 2003. Continuous-time model identification from sampled data: implementation issues and perfor-mance evaluation. Int. J. Contr 76, 1337 – 1357.  

  8. Godfrey , K . 1982 . Compartmental Models and Their Application . Aca-demic Press , London .  

  9. Harvey , L. D. D . 2000 . Response of the carbon cycle and other bio-geochemical cycles: translating emissions of GHGs and aerosols into concentrations and radiative forcing . In: Climate and Global Environmental Change (ed. L. D. D. Harvey ). Pearson Education Ltd , Essex .  

  10. Hasselmann , K. , Sausen , R. , Maier-Reimer , E. and Voss , R. 1993. On the cold start problem in transient simulations with coupled atmosphere-ocean models. Clim. Dyn. 9 , 53 – 61.  

  11. Hasselmann , K. , Hasselmann , S. , Giering , R. , Ocana , V. and Storch, H. V. 1997. Sensitivity study of optimal CO2 emission paths using a sim-plied structural integrated assessment model (SIAM). Clim. Change 37, 345 – 386.  

  12. Hooss , G . 2001 . Aggregate Models of Climate Change Development and Applications . PhD Thesis. Max-Planck-Institut fiir Meteorologie, Hamburg , Germany .  

  13. Hooss , G. , Voss , R. , Hasselman , K. , Maier-Reimer , E. and co-authors. 2001. A nonlinear impulse response model of the cou-pled carbon cycle-climate system (NICCS). Clim. Dyn. 18, 189 – 202.  

  14. Jarvis , A. J. , Young , P. C. , Leedal , D. L. and Chotai , A. 2008. A robust sequential CO2 emissions strategy based on optimal con-trol of atmospheric CO2 concentrations. Clim. Change 86 , 357 – 373  

  15. Joos , F. , Bruno , M. , Fink , R. , Siegenthaler , U. , Stocker , T. F and co-authors. 1996. An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake. Tellus 48B, 397 – 417.  

  16. Kwon , O.Y. and Schnoor , J. L. 1994. Simple global carbon model: the atmosphere-terrestrial biosphere-ocean interaction. Global Bio-geochem. Cycles 8 , 295 – 305.  

  17. Leedal , D. T . 2007 . Sequential Decision Making in Climate Change Mit-igation: A Control System Perspective . PhD Thesis.Lancaster Univer-sity, Lancaster , UK .  

  18. Lenton , T. M . 2000 . Land and ocean carbon cycle feedback effects on global warming in a simple Earth system model . Tellus 52B , 1159 – 1188 .  

  19. Lowe , J . 2003 . Parameters for tuning a simple climate model . ( accessed from http : //unfccc.int/resource/brazil/climate.html ).  

  20. Maier-Reimer , E. and Hasselmann , K . 1987 . Transport and storage of CO2 in the ocean - an inorganic ocean-circulation carbon cycle model . Clim. Dyn . 2 , 63 – 90 .  

  21. Maier-Reimer , E. , Mikolajewicz , U. and Winguth , A . 1996 . Future ocean uptake of CO2: interaction between ocean circulation and biology . Clim. Dyn . 12 , 711 – 721 .  

  22. Meinshausen , M. , Raper , S. C. B. and Wigley , T. M. L . 2008 . Emulating IPCC AR4 atmosphere-ocean and carbon cycle models for projecting global-mean, hemispheric and land/ocean temperatures: MAGICC 6.0 . Atmos. Chem. Phys. Discuss . 8 , 6153 – 6272 .  

  23. Meyer , R. , Joos , F. , Esser , G. , Heimann , M. , Hooss , G. and co-authors. 1999. The substitution of high-resolution terrestrial biosphere models and carbon sequestration in response to changing CO2 and climate. Global Biogeochem. Cycles 13, 785 – 802.  

  24. Moore , B . 1981 . Principle component analysis in linear systems: con-trollability, observability, and model reduction . IEEE Trans. Auto. Contr 26 , 17 – 32 .  

  25. Nordaus , W. D. and Boyer , J . 2000 . Warming the World: Economic Models of Global Warming . MIT Press, Cambridge , MA .  

  26. Orr , J. C. , Maier-Reimer , E. , Mikolajewicz , U. , Monfray , P. , Sarmiento , J. L. , and co-authors. 2001. Estimates of anthropogenic carbon up-take from four three-dimensional global ocean models. Global Bio-geochem. Cycles 15, 43 – 60.  

  27. Raper , S. C.B. , Gregory , J. M. and Osborn , T. J. 2001. Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results. Clim. Dyn. 17, 601 – 613.  

  28. Sarmiento , J. , Hughes , T. , Stouffer , R. and Manabe , S . 1998 . Simulated response of the ocean carbon cycle to anthropogenic climate warming . Nature 393 , 245 – 252 .  

  29. Tang , D. , Kholodar , D. , Juang , J.N. and Dowell , E. H. 2001. System identification and proper orthogonal decomposi-tion applied to unsteady aerodynamics. AIAA J. 39, 1569 – 1576.  

  30. Thompson , M. V. and Randerson , J. T . 1999 . Impulse response functions of terrestrial carbon cycle models: method and application . Global Change Biol . 5 , 371 – 394 .  

  31. Wigley , T. M. L . 1991 . A simple inverse carbon cycle model . Global Biogeochem. Cycles 5 , 373 – 382 .  

  32. Wigley , T. M.L , Richels , R. and Edmonds , J. A . 1996 . Economic and environmental choices in the stabilization of atmospheric CO2 con-centrations . Nature 379 , 242 – 245 .  

  33. Young , P. C . 1999 . Data-based mechanistic modeling, generalized sen-sitivity and dominant mode analysis . Comput. Phys. Commun . 117 , 113 – 129 .  

  34. Young , P. C . 2000. Stochastic, dynamic modeling and signal processing: time variable and state dependent parameter estimation. In: Nonlinear and Nonstationaty Signal Processing (eds W. J. Fitzgerald, A. Walden, R. Smith and P. C. Young). Cambridge University Press , Cambridge , 74 – 114.  

  35. Young , P. C. and Beven , K. J. 1994. Data-based mechanistic mod-eling and the rainfall-flow nonlinearity. Environmetrics 5, 335 – 363.  

  36. Young , P. C. and Gamier , H. 2006. Identification and estimation of continuous-time, data-based mechanistic models for environmental systems. Environ. Model Software 21, 1055 – 1072.  

  37. Young , P. C. , Parkinson , S. and Lees , M. J. 1996. Simplicity out of complexity: Occam's razor revisited. J. AppL Stat. 23, 165 – 210.  

comments powered by Disqus