Start Submission Become a Reviewer

Reading: Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006

Download

A- A+
Alt. Display

Original Research Papers

Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006

Authors:

Volker Freudenthaler ,

Meteorological Institute, Ludwig-Maximilians-Universität, DE
X close

Michael Esselborn,

Institute of Atmospheric Physics, German Aerospace Center (DLR), DE
X close

Matthias Wiegner,

Meteorological Institute, Ludwig-Maximilians-Universität, DE
X close

Birgit Heese,

Leibniz Institute for Tropospheric Research, DE
X close

Matthias Tesche,

Leibniz Institute for Tropospheric Research, DE
X close

Albert Ansmann,

Leibniz Institute for Tropospheric Research, DE
X close

Detlef Müller,

Leibniz Institute for Tropospheric Research, DE
X close

Dietrich Althausen,

Leibniz Institute for Tropospheric Research, DE
X close

Martin Wirth,

Institute of Atmospheric Physics, German Aerospace Center (DLR), DE
X close

Andreas Fix,

Institute of Atmospheric Physics, German Aerospace Center (DLR), DE
X close

Gerhard Ehret,

Institute of Atmospheric Physics, German Aerospace Center (DLR), DE
X close

Peter Knippertz,

Institute for Atmospheric Physics, Johannes Gutenberg University, DE
X close

Carlos Toledano,

Meteorological Institute, Ludwig-Maximilians-Universität, DE
X close

Josef Gasteiger,

Meteorological Institute, Ludwig-Maximilians-Universität, DE
X close

Markus Garhammer,

Meteorological Institute, Ludwig-Maximilians-Universität, DE
X close

Meinhard Seefeldner

Meteorological Institute, Ludwig-Maximilians-Universität, DE
X close

Abstract

Vertical profiles of the linear particle depolarization ratio of pure dust clouds were measured during the Saharan Mineral Dust Experiment (SAMUM) at Ouarzazate, Morocco (30.9◦N, –6.9◦E), close to source regions in May–June 2006, with four lidar systems at four wavelengths (355, 532, 710 and 1064 nm). The intercomparison of the lidar systems is accompanied by a discussion of the different calibration methods, including a new, advanced method, and a detailed error analysis. Over the whole SAMUM periode pure dust layers show a mean linear particle depolarization ratio at 532 nm of 0.31, in the range between 0.27 and 0.35, with a mean Ångström exponent (AE, 440–870 nm) of 0.18 (range 0.04–0.34) and still high mean linear particle depolarization ratio between 0.21 and 0.25 during periods with aerosol optical thickness less than 0.1, with a mean AE of 0.76 (range 0.65–1.00), which represents a negative correlation of the linear particle depolarization ratio with the AE. A slight decrease of the linear particle depolarization ratio with wavelength was found between 532 and 1064 nm from 0.31 ± 0.03 to 0.27 ± 0.04.

How to Cite: Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M., Ansmann, A., Müller, D., Althausen, D., Wirth, M., Fix, A., Ehret, G., Knippertz, P., Toledano, C., Gasteiger, J., Garhammer, M. and Seefeldner, M., 2009. Depolarization ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus B: Chemical and Physical Meteorology, 61(1), pp.165–179. DOI: http://doi.org/10.1111/j.1600-0889.2008.00396.x
10
Views
2
Downloads
  Published on 01 Jan 2009
 Accepted on 18 Aug 2008            Submitted on 2 Jan 2008

References

  1. Althausen , D. , Muller , D. , Ansmann , A. , Wandinger , U. , Hube , H. and co-authors. 2000. Scanning 6-wavelength 11-channel aerosol lidar. J. Atmos. Ocean. TechnoL 17 , 1469 – 1482 .  

  2. Alvarez , J. M. , Vaughan , M. A. , Hostetler , C. A. , Hunt , W. H. and Winker , D. M . 2006 . Calibration technique for polarization-sensitive lidars . J. Atmos. Ocean. TechnoL 23 , 683 – 699 .  

  3. Ansmann , A. , Bösenberg , J. , Chaikovsky , A. , Comerón , A. , Eckhardt , S. and coauthors. 2003. Long-range transport of Saharan dust to northern Europe: the 11-16 October 2001 outbreak observed with EARUNET. J. Geophys. Res . 108 , https://doi.org/10.1029/2003JDO03757 .  

  4. Ansmann , A. , Mattis , I. , Muller , D. , Wandinger , U. , Radlach , M. and co-authors. 2005. Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar. J. Geophys. Res . 110 , https://doi.org/10.1029/2005JD005000 .  

  5. Ansmann , A. , Tesche , M. , Althausen , D. , Muller , D. , Freudenthaler , V. and co-authors. 2007. Influence of Saharan dust on cloud glacia-tion in southern Morocco during SAMUM. J. Geophys. Res . 112 , https://doi.org/10.1029/2007JD008575 .  

  6. Behrendt , A. and Nakamura , T . 2002 . Calculation of the calibration constant of polarization lidar and its dependency on atmospheric tem-perature . Optics Exp . 10 , 805 – 817 .  

  7. Biele , J. , Beyerle , G. and Baumgarten G. 2000. Polarization lidar: cor-rections of instrumental effects. Optics Exp. 7, 427 – 435.  

  8. Cairo , E , Di Donfrancesco , G. , Adriani , A. , Lucio , P. and Federico , E 1999 . Comparison of various linear depolarization parameters mea-sured by lidar . AppL Opt . 38 , 4425 – 4432 .  

  9. Chen , W. N. , Tsai , F. J. , Chou , C. C. K. , Chang , S. Y. , Chen , Y. W. and co-authors. 2007. Optical properties of Asian dust in the free atmosphere measured by raman lidar at Taipei, Taiwan. Atmos. Environ. 41, 7698 – 7714.  

  10. Dubovilc , O. , Sinyuk , A. , Lapyonok , T. , Holben , B. N. , Mishchenko , M. and co-authors. 2006. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res . 111 , https://doi.org/10.1029/2005JDO06619 .  

  11. Esselborn , M. , Wirth , M. Fix , A. , Tesche , M. and Ehret , G. 2008. Airborne high spectral resolution lidar for measuring aerosol extinction and backscatter coefficients. AppL Opt. 47, 346 – 358.  

  12. Esselborn , M. , Wirth , M. , Fix , A. , Weinzierl , B. , Rasp , K. and co-authors. 2008. Spatial distribution and optical properties of Saharan dust ob-served by airborne high spectral resolution lidar during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00394.x .  

  13. Fernald , E G . 1984 . Analysis of atmospheric lidar observations: some comments . Appl. Opt . 23 , 652 – 653 .  

  14. Freudenthaler , V , Homburg , F. and Jager , H . 1996 . Optical parameters of contrails from lidar measurements: linear depolarization . Geophys. Res. Lett . 23 , 3715 – 3718 .  

  15. Gobbi , G. R , 1998 . Polarization lidar returns from aerosols and thin clouds: a framework for the analysis . AppL Opt . 37 , 5505 – 5508 .  

  16. Gobbi , G. R , Barnaba , F. , Giorgi , R. and Santacasa , A . 2000 . Altitude—resolved properties of a Saharan dust event over the Mediterranean . Atmos. Environ . 34 , 5119 – 5127 .  

  17. Hayashida , S. , Kobayashi , A. and Iswasaka , Y . 1984 . Lidar measure-ments of stratospheric aerosol content and depolarization ratios after the eruption of El Chichon volcano: measurements at Nagoya, Japan . Geofis. Int . 23 , 277 – 288 .  

  18. Heese , B. , Freudenthaler , V. , Seefeldner , M. and Wiegner , M. 2002. POLIS: a new portable system for ground-based and airborne mea-surements of aerosols and clouds. In: Lidar Remote Sensing in Atmospheric and Earth Sciences (eds. L. R. Bissonnette , G. Roy and G. Vallee ). Defence Research and Development, Canada-Valcartier, Val-Belair, QU, Canada, 71 – 74.  

  19. Iwasaka , Y. , Shibata , T. , Nagatani , T. , Shi , G.-Y. , Kim , Y. S. and co-authors. 2003. Large depolarization ratio of free tropospheric aerosols over the Taklamakan desert revealed by lidar measurements: possi-ble diffusion and transport of dust particles. J. Geophys. Res . 108 , https://doi.org/10.1029/2002JD003267 .  

  20. Kandler , K. , Schiitz , L. , Deutscher , C. , Ebert , M. , Hofmann , H. and co-authors. 2008. Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00385.x .  

  21. Klett , J. D . 1985 . Lidar Inversion with Variable Bacicscatter/Extinction Ratios . AppLOpt . 24 , 1638 – 1643 .  

  22. Knippertz , P. , Ansmann , A. , Althausen , D. , Tesche , M. , Bierwirth , E. and co-authors. 2008. Dust mobilization and transport in the northern Sahara during SAMUM 2006-a meteorological overview. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00380.x .  

  23. McNeil , W. R. and Carswell , A. I . 1975 . Lidar polarization studies of the troposphere . AppL Opt . 14 , 2158 – 2168 .  

  24. Mishchenlco , M. I. and Sassen , K . 1998 . Depolarization of lidar returns by small ice crystals: an application to contrails . Geophys. Res. Lett . 25 , 309 – 312 .  

  25. Muller , D. , Mattis , I. , Wandinger , U. , Ansmann , A. , Althausen , D. and co-authors. 2003. Saharan dust over a central European EARUNET-AERONET site: combined observations with Raman lidar and Sun photometer. J. Geophys. Res . 108 , https://doi.org/10.1029/2002JDO02918 .  

  26. Murayama , T. , Furushima , M. , Oda , A. and Iwasaka , N . 1996 . Depo-larization ratio measurements in the atmospheric boundary layer by lidar in Tokyo . J. Meteorol. Soc. Japan 74 , 571 – 578 .  

  27. Murayama , T. , Masonis , S. J. , Redemann , J. , Anderson , T. L. , Schmid , B. and co-authors. 2003. An intercomparison of lidar-derived aerosol optical properties with airborne measurements near Tokyo during ACE-Asia. J. Geophys. Res . 108 , https://doi.org/10.1029/2002JD003259 .  

  28. Murayama , T. , Muller , D. , Wada , K. , Shimizu , A. , Selciguchi , M. and co-authors. 2004. Characterization of Asian dust and Siberian smoke with multiwavelength Raman lidar over Tokyo, Japan in spring 2003. Geophys. Res. Lett. 31, https://doi.org/10.1029/2004GL021105 .  

  29. Reichardt , J. , Tsias , A. and Behrendt , A . 2000 . Optical properties of PSC Ia-enhanced at UV and visible wavelengths: model and observations . Geophys. Res. Lett . 27 , 201 – 204 .  

  30. Reichardt , J. , Baumgart , R. and McGee , T. J . 2003 . Three—signal method for accurate measurements of depolarization ratio with lidar . AppL Opt . 42 , 4909 – 4913 .  

  31. Sakai , T. , Shibata , T. , Kwon , S.-A. , Kim , Y.-S. , Tamura , K. and co-authors. 2000. Free tropospheric aerosol backscatter, depolarization ratio, and relative humidity measured with the Raman lidar at Nagoya in 1994-1997: contribution of aerosols from the Asian contient and the Pacific Ocean. Atmos. Environ. 34, 431 – 442.  

  32. Sakai , T. , Shibata , T. , Iwasaka , Y. , Nagai , T. , Nalcazato , M. and co-authors. 2002. Case study of Raman lidar measurements of Asian dust events in 2000 and 2001 at Nagoya and Tsukuba, Japan. Atmos. Environ. 36, 5479 – 5489.  

  33. di Sarra , A. , Di Iorio , T. , Cacciani , M. , Fiocco , G. and Fuh. , D . 2001. Saharan dust profiles measured by lidar at Lampedusa. J. Geophys. Res . 106 , 10335 – 10347.  

  34. Sassen , K . 1991 . The polarization lidar technique for cloud research: a reviwe and current assessments . Bull. Am. MeteoroL Soc . 72 , 1848 – 1866 .  

  35. Sassen , K . 2005 . Polarization in lidar . In: Lidar (ed. C. Weiticamp ). Springer , New York , 19 – 42 .  

  36. Sassen , K. , Zhu , J. , Webley , P. , Dean , K. and Cobb , P. 2007. Volcanic ash plume identification using polarization lidar: Augustine eruption, Alaska. Geophys. Res. Lett. 34, https://doi.org/10.1029/2006GL027237 .  

  37. Schotland , R. M. , Sassen , K. and Stone , R . 1971 . Observations by lidar of linear depolarization ratios for hydrometeors . J. AppL MeteoroL 10 , 1011 – 1017 .  

  38. Shimizu , A. , Sugimoto , N. , Matsui , I. , Arao , K. , Uno , I. and co-authors. 2004. Continuous observations of Asian dust and other aerosols by polarization lidar in China and Japan during ACE-Asia. J. Geophys. Res . 109 , D19517, https://doi.org/10.1029/2002JD003253 .  

  39. Sugimoto , N. , Matsui , I. , Shimizu , A. , Uno , I. , Asai , K. and co-authors. 2002. Observation of dust and anthropogenic aerosol plumes in the Northwest Pacific with a two-wavelength polarization li-dar on board the research vessel Mirai. Geophys. Res. Lett. 29, https://doi.org/10.1029/2002GL015112 .  

  40. Tesche , M. , Ausmann , A. , Muller , D. , Althausen , D. , Mattis , I. and co-authors. 2008. Vertical profiling of Saharan dust with Raman Lidars and airborne HSRL in southern Morocco during SAMUM. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00390.x .  

  41. Toledano , C. , Wiegner , M. , Garhammer , M. , Seefeldner , M. , Freuden-thaler , V. and co-authors. 2008. Spectral aerosol optical depth characterization of desert dust during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00382.x .  

  42. Toon , O. , Tabazadeh , A. , Browell , E. and Jordan , J. 2000. Analysis of lidar observations of Arctic polar stratospheric clouds during January 1989. J. Geophys. Res . 105 , 20589 – 20615.  

  43. Weinzierl , B. , Pretzold , M. , Esselborn , M. , Wirth , K. , Rasp , K. and co-authors. 2008. Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00392.x .  

  44. Wiegner , M. , Gasteiger , J. , Kandler , K. , Weinzierl , B. , Rasp , K. and co-authors. 2008. Numerical simulations of optical properties of Saharan dust aerosols with special emphasis on the linear depolarization ratio. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00381.x .  

  45. Winker , D. and Osborn , M . 1992 . Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization-sensitive lidar . Geophys. Res. Lett . 19 , 161 – 174 .  

comments powered by Disqus