Start Submission Become a Reviewer

Reading: Spatial distribution and optical properties of Saharan dust observed by airborne high spectr...

Download

A- A+
Alt. Display

Original Research Papers

Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006

Authors:

Michael Esselborn ,

Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft– und Raumfahrt (DLR), DE
X close

Martin Wirth,

Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft– und Raumfahrt (DLR), DE
X close

Andreas Fix,

Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft– und Raumfahrt (DLR), DE
X close

Bernadett Weinzierl,

Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft– und Raumfahrt (DLR), DE
X close

Katharina Rasp,

Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft– und Raumfahrt (DLR), DE
X close

Matthias Tesche,

Leibniz–Institut für Troposphärenforschung (IFT), DE
X close

Andreas Petzold

Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft– und Raumfahrt (DLR), DE
X close

Abstract

Airborne measurements of pure Saharan dust extinction and backscatter coefficients, the corresponding lidar ratio and the aerosol optical thickness (AOT) have been performed during the Saharan Mineral Dust Experiment 2006, with a high spectral resolution lidar. Dust layers were found to range from ground up to 4–6 km above sea level (asl). Maximum AOT values at 532 nm, encountered within these layers during the DLR Falcon research flights were 0.50–0.55. A significant horizontal variability of the AOT south of the High Atlas mountain range was observed even in cases of a well-mixed dust layer. High vertical variations of the dust lidar ratio of 38–50 sr were observed in cases of stratified dust layers. The variability of the lidar ratio was attributed to dust advection from different source regions. The aerosol depolarization ratio was about 30% at 532 nm during all measurements and showed only marginal vertical variations.

How to Cite: Esselborn, M., Wirth, M., Fix, A., Weinzierl, B., Rasp, K., Tesche, M. and Petzold, A., 2009. Spatial distribution and optical properties of Saharan dust observed by airborne high spectral resolution lidar during SAMUM 2006. Tellus B: Chemical and Physical Meteorology, 61(1), pp.131–143. DOI: http://doi.org/10.1111/j.1600-0889.2008.00394.x
  Published on 01 Jan 2009
 Accepted on 22 Jul 2008            Submitted on 31 Dec 2007

References

  1. Amiridis , V , Balis , D. S. , Kazadzis , S. , Bais , A. , Giannakalci , E. and co-authors. 2005. Four—year aerosol observations with a Ra-man lidar at Thessaloniki, Greece, in the framework of European Aerosol Research Lidar Network (EARLINET). J. Geophys. Res . 110 , https://doi.org/10.1029/2005JD006190 .  

  2. Ansmann , A. , Riebesell , M. and Weiticamp , C . 1990 . Measurement of atmospheric aerosol extinction profiles with a Raman lidar . Opt. Lett . 14 , 746 – 748 .  

  3. Ansmann , A. , Wagner , F. , Althausen , D. , Muller , D. , Herber , A. and co-authors. 2001. European pollution outbreaks during ACE 2: Lofted aerosol plumes observed with Raman lidar at the Portuguese coast. J. Geophys. Res . 106 , 20725 – 20734.  

  4. Balis , D. S. , Amiridis , V. , Nickovic , S. , Papayannis , A. and Zere-fos , C . 2004. Optical properties of Saharan dust layers as de-tected by a Raman lidar at Thessaloniki. Geophys. Res. Lett. 31, https://doi.org/10.1029/2004GL019881 .  

  5. Bösenberg , J. et al. 2003 . A European aerosol research lidar network to establish an aerosol climatology. MPI—Report 317, Max—Planck Inst. fur Meteorologie , Hamburg , Germany .  

  6. Caquineau , S. , Gaudichet , A. , Gomes , L. and Legrand , M . 2002. Min-eralogy of Saharan dust transported over northwestern tropical At-lantic Ocean in relation to source regions. J. Geophys. Res . 107 , https://doi.org/10.1029/2000JDO00247 .  

  7. De Tomasi , F. , Blanco , A. and Perrone M. R . 2003 . Raman lidar moni-toring of extinction and bacicscattering of African dust layers and dust characterization . AppL Optics 42 , 1699 – 1709 .  

  8. Dinter , T. , von Hoyningen—Hiine , W. , Kokhanovsky , A. , Burrows , J. , Bierwirth , E. and co-authors. 2008. Retrieval of aerosol op-tical thickness for desert conditions using MERIS observations during the SAMUM campaign. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00391.x .  

  9. Esselborn , M. , Wirth , M. , Fix , A. , Tesche , M. and Ehret G . 2008 . Air-borne high spectral resolution lidar for measuring aerosol extinction and bacicscatter coefficients . AppL Optics 47 , 346 – 358 .  

  10. Freudenthaler , V. , Esselborn , M. , Wiegner , M. , Heese , B. , Tesche , M. and co-authors. 2008. Depolarization—ratio profiling at several wavelengths in pure Saharan dust during SAMUM. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00396.x .  

  11. GLOBE Task Team and others 1999. The Global Land One—kilometer Base Elevation (GLOBE) Digital Elevation Model, Version 1.0. (eds. D. A. Hastings , P. K. Dunbar , G. M. Elphingston , M. Bootz , H. Muralcami and co-editors). National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, CO 80303.  

  12. Haywood , J. and Boucher O. 2000 . Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review . Rev. Geophys . 38 , 513 – 543 .  

  13. Haywood , J. M. , Francis , P. N. , Geogdzhhayev , I. , Mishchenko , M. and Frey R . 2001 . Comparison of Saharan dust aerosol optical depths retrieved using aircraft mounted pyranometers and 2—channel AVHRR algorithms . Geophys. Res. Lett . 28 , 2393 – 2396 .  

  14. Heintzenberg , J . 2008. The SAMUM-1 experiment over Southern Mo-rocco: overview and introduction. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00403.x .  

  15. Kahn , R. , Petzold , A. , Wendisch , M. , Bierwirth , E. , Dinter , T. and co-authors. 2008. Desert dust aerosol air mass mapping in the western Sahara, using particle properties derived from space—based multi—angle imaging. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00398.x .  

  16. Knippertz , P ., Ansmann , A ., Althausen , D ., Muller , D ., Tesche , M . and co-authors. 2008. Dust mobilization and transport in the Northern Sahara during SAMUM 2006: a meteorological overview. Tellus 61B , doi: https://doi.org/10.1111/j.1600-0889.2008.00380.x .  

  17. Mattis , I. , Ansmann , A. , Muller , D. , Wandinger , U. and Althausen , D. 2002. Dual-wavelength Raman lidar observations of the extinction-to-bacicscatter ratio of Saharan dust. Geophys. Res. Lett. 29, https://doi.org/10.1029/2002GL014721 .  

  18. Mona , L. , Amodeo , A. , Pandolfi , M. and Pappalardo , G . 2006 . Saharan dust intrusions in the Mediterranean area : three years of Raman lidar measurements. 111 , D16203 , https://doi.org/10.1029/2005JD006569 .  

  19. Muller , D. , Mattis , I. , Wandinger , U. , Ansmann , A. , Althausen , D. and co-authors. 2003. Saharan dust over a central European EARUNET—AERONET site: combined observations with Raman lidar and Sun photometer. J. Geophys. Res . 108 , https://doi.org/10.1029/2002JDO02918 .  

  20. Papayannis , A. , Balis , D. , Amiridis , V , Chourdakis , G. , Tsalcnalcis , G. and co-authors. 2005. Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spec-trophotometric and satellite observations in the frame of the EAR-L]NET project. Atmos. Chem. Phys. 5, 2065 – 2079.  

  21. Papayannis , A. , Amiridis , V. , Mona , L. , Tsaknakis , G. , Balis , D. and co-authors. 2008. Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002). J. Geophys. Res . 113 , D10204, https://doi.org/10.1029/2007JD009028 .  

  22. Petzold , A. , Rasp , K. , Weinzierl , B. , Esselborn , M. , Hamburger , T. and co-authors. 2008. Saharan dust absorption and refractive index from aircraft—based observations during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00383.x .  

  23. Penner , J. E. , Andreae , M.O. , Annegarn , H , Barrie , L. , Feichter , J. and co-authors. 2001. Aerosols, their direct and indirect effects. In: Climate Change 2001: The Scientific Basis. Contribution of Work-ing Group Ito the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds. J. T. Houghton and Y. Ding ). Cam-bridge University Press, Cambridge, UK, and New York, NY, USA, 289 – 348.  

  24. Piironen , P. and Eloranta , E. W . 1994 . Demonstration of a high—spectral—resolution lidar based on an iodine absorption filter . Optics Lett . 19 , 234 – 236 .  

  25. Powell , D. M. , Reagan , J. A. , Rubio , M. A. , Erxleben , W. H. and Spin-hirne , J. D . 2000 . ACE-2 multiple angle micro-pulse lidar observations from Las Galletas, Tenerife, Canary Islands . Tellus 52B , 652 – 661 .  

  26. Sakai , T. , Shibata , T. , Kwon , S. A. , Kim , Y. S. , Tamura , K. and co-authors. 1999. Free tropospheric aerosol bacicscatter, depolarization ratio, and relative humidity measured with the Raman lidar at Nagoya in 1994-1997: contributions of aerosols from the Asian Continent and the Pacific Ocean. Atmos. Environ. 34, 431 – 442.  

  27. Shimizu , H. , Lee , S. A. and She , C. Y . 1983 . High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters . AppL Optics 22 , 1373 – 1381 .  

  28. Shipley , S. T. , Tracy , D. H. , Eloranta , E. W. , Trauger , J. T. , Sroga , J. T. and co-authors. 1983. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: theory and instrumentation. AppL Optics 22, 3716 – 3724.  

  29. Solomon , S. , Qin , D. , Manning , M. , Chen , Z. , Marquis , M. and co-editors. 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press , Cambridge , United Kingdom and New York, 153 – 180.  

  30. Tegen , I. , Holing , R , Chin , M. , Fung , I. , Jacob , D. and co-authors. 1997. Contribution of different aerosol species to the global aerosol extinc-tion optical thickness: Estimates from model results. J. Geophys. Res . 102 , 23 895-23 916, https://doi.org/10.1029/97JD01864 .  

  31. Tesche , M. , Ansmann , A. , Muller , D. , Althausen , D. , Heese , B. and co-authors. 2008. Vertical profiling of Saharan dust with Raman lidars and airborne HSRL in southern Morocco during SAMUM. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00390.x .  

  32. Voss , K. J. , Welton , E. J. , Quinn , P. K. , Johnson , J. , Thompson , A. M. and co-authors. 2001. Lidar measurements during Aerosols99. J. Geophys. Res . 106 , 20821 – 20831.  

  33. Wagner , F. , Bortoli , D. , Pereira , S. , Costa , M.J. , Silva , A. M. and co-authors. 2008. Properties of dust aerosol particles transported to Portugal from the Sahara desert. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00393.x .  

  34. Weinzierl , B. , Petzold , A. , Esselborn , M. , Wirth , M. , Rasp , K. and co-authors. 2008. Airborne measurements of dust layer properties, parti-cle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00392.x .  

  35. Welton , E. J. , Voss , K. J. , Gordon , H. R. , Maring , H. , Smirnov , A. and co-authors. 2000. Ground-based lidar measurements of aerosols during ACE-2: instrument description, results, and comparisons with other ground-based and airborne measurements. Tellus 52B, 636 – 651.  

  36. Wernli , H. and Davis , H. C . 1997 . A Lagrangian-based analysis of extratropical cyclones, I: the method and some applications . Q. J. R. MeteoroL Soc . 123 , 467 – 489 .  

  37. Winker , D. M. , Hunt , W. H. and McGill , M. J . 2007. Initial performance assessment of CALIOP. Geophys. Res. Lett. 34 , https://doi.org/10.1029/2007GL030135 .  

comments powered by Disqus