Start Submission Become a Reviewer

Reading: Airborne measurements of dust layer properties, particle size distribution and mixing state ...

Download

A- A+
Alt. Display

Original Research Papers

Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006

Authors:

Bernadett Weinzierl ,

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, DE
X close

Andreas Petzold,

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, DE
X close

Michael Esselborn,

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, DE
X close

Martin Wirth,

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, DE
X close

Katharina Rasp,

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, DE
X close

Konrad Kandler,

Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, DE
X close

Lothar Schütz,

Institut für Physik der Atmosphäre, Johannes-Gutenberg-Universität Mainz, DE
X close

Peter Koepke,

Meteorologisches Institut, Ludwig-Maximilians-Universität, DE
X close

Markus Fiebig

Department for Atmospheric and Climate Research, Norwegian Institute for Air Research (NILU), NO
X close

Abstract

The Saharan Mineral Dust Experiment (SAMUM) was conducted in May/June 2006 in southern Morocco. As part of SAMUM, airborne in situ measurements of the particle size distribution in the diameter range 4 nm < Dp < 100 μm were conducted. The aerosol mixing state was determined below D p < 2.5 μm. Furthermore, the vertical structure of the dust layers was investigated with a nadir-looking high spectral resolution lidar (HSRL). The desert dust aerosol exhibited two size regimes of different mixing states: below 0.5 μm, the particles had a non-volatile core and a volatile coating; larger particles above 0.5 μm consisted of non-volatile components and contained light absorbing material. In all cases, particles larger than 10 μm were present, and in 80% of the measurements no particles larger than 40 μm were present. The abundance of large particles showed almost no height dependence. The effective diameter D eff in the dust plumes investigated showed two main ranges: the first range of D eff peaked around 5 μm and the second range of D eff around 8 μm. The two ranges of D eff suggest that it may be inadequate to use one average effective diameter or one parametrization for a typical dust size distribution.

How to Cite: Weinzierl, B., Petzold, A., Esselborn, M., Wirth, M., Rasp, K., Kandler, K., Schütz, L., Koepke, P. and Fiebig, M., 2009. Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus B: Chemical and Physical Meteorology, 61(1), pp.96–117. DOI: http://doi.org/10.1111/j.1600-0889.2008.00392.x
1
Views
  Published on 01 Jan 2009
 Accepted on 14 Aug 2008            Submitted on 2 Jan 2008

References

  1. d'Almeida , G. A. and Schiitz , L. 1983 . Number, mass and volume dis-tributions of mineral aerosol and soils of the Sahara . J. Clim. AppL MeteoroL 22 , 233 – 243 .  

  2. Ansmann , A. , Mattis , I. , Muller , D. , Wandinger , U. , Radlach , M. and co-authors. 2005. Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar. J. Geophys. Res . 110 , 1 – 12.  

  3. Baumgardner , D. , Dye , J. E. , Gandrud , B. W. and Knollenberg , R. G. 1992. Interpretation of measurements made by the forward scattering spectrometer probe (FSSP-300) during the Airborne Arctic Strato-spheric Expedition. J. Geophys. Res . 97 , 8035 – 8046.  

  4. Bohren , C. F. and Huffman , D. R . 1983 . Absorption and Scattering of Light by Small Particles. John Wiley & Sons, Inc., New York. Borrmann, S., Luo, B. and Mishchenko, M. 2000. Application of the T-matrix method to the measurement of aspherical (ellipsoidal) particles with forward scattering optical particle counters . J. Aerosol Sci . 31 , 789 – 799 .  

  5. Clarke , A. D . 1991 . A thermo-optic technique for in situ analysis of size-resolved aerosol physicochemistry . Atmos. Environ. (Part A) 25 , 635 – 644 .  

  6. Clarke , A. D. , Shinozulca , Y. , Kapustin , V. N. , Howell , S. , Huebert , B. and co-authors. 2004. Size distributions and mixtures of dust and black carbon aerosol in Asian outflow: physiochemistry and optical properties. J. Geophys. Res . 109 , D15509.  

  7. Dubovilc , O. , Holben , B. , Eck , T. F. , Smirnov , A. , Kaufman , Y. J. and co-authors. 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci . 59 , 590 – 608.  

  8. Esselborn , M. , Wirth , M. , Fix , A. , Tesche , M. and Ehret , G . 2007 . Air-borne high spectral resolution lidar for measuring aerosol extinction and bacicscatter coefficients . AppL Opt . 47 , 346 – 358 .  

  9. Feldpausch , P. , Fiebig , M. , Fritzsche , L. and Petzold , A . 2006 . Measure-ment of ultrafine aerosol size distributions by a combination of diffu-sion screen separators and condensation particle counters . J. Aerosol Sci . 37 , 577 – 597 .  

  10. Fiebig , M . 2001 . Das tmposphiirische Aerosol in mittleren Breiten—Mikrophysik, Optik und Klimaantrieb am Beispiel der Feld-studie LACE 98 . Ph.D. thesis. Ludwig-Maximilians-Universität , Miinchen .  

  11. Fiebig , M. , Stein , C. , Schröder , F. , Feldpausch , P. and Petzold , A . 2005 . Inversion of data containing information on the aerosol particle size distribution using multiple instruments . J. Aerosol Sci . 36 , 1353 – 1372 .  

  12. Hansen , J. E . 1971 . Multiple scattering of polarized light in planetary atmospheres. Part II. Sunlight reflected by terrestrial water clouds . J. Atmos. Sci . 28 , 1400 – 1426 .  

  13. Hatch , T. and Choate , S. P . 1929 . Statistical description of the size properties of non uniform particulate substances . J. Franklin Inst . 207 , 369 – 387 .  

  14. Hauf , T. and Clark , T. L . 1989 . Three-dimensional numerical experi-ments on convectively forced internal gravity waves . Q. J. R. Meteoml. Soc . 115 , 309 – 333 .  

  15. Haywood , J. and Boucher , O. 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev. Geophys. 38, 513 – 543.  

  16. Haywood , J. , Francis , P. , Osborne , S. , Glew , M. , Loeb , N. , High-wood , E. and co-authors. 2003a. Radiative properties and direct radiative effect of Saharan dust measured by the C-130 aircraft during SHADE, 1: solar spectrum. J. Geophys. Res . 108 , 8577, 8510.1029/2002JDO02687.  

  17. Haywood , J. M. , Osborne , S. R. , Francis , P. N. , Keil , A. , Formenti , P. and co-authors. 2003b. The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000. J. Geophys. Res . 108 , 8473, 8410.1029/2002JDO02226.  

  18. Haywood , J. M. , Allan , R. P. , Culverwell , I. , Slingo , T. , Milton , S. and co-authors. 2005. Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003? J. Geophys. Res . 110 , 1 – 14.  

  19. Heintzenberg , J . 2008. The SAMUM-1 experiment over Southern Morocco: overview and introduction. Tellus 61B, 10.1111/j.1600-0889.2008.00403.x.  

  20. Hess , M. , Koepke , P. and Schuh , I . 1998 . Optical properties of aerosols and clouds: the software package OPAC . Bull. Am. MeteoroL Soc . 79 , 831 – 844 .  

  21. Hinds , W. C . 1999 . Aerosol Technology: Properties , Behaviour and Measurement of Airborne Particles. John Wiley & Sons , Inc ., New York .  

  22. IPCC . 2001 . Climate Change 2001: The Scientific Basis . Cambridge University Press , Cambridge .  

  23. IPCC . 2007 . Climate Change 2007: The Scientific Basis . Cambridge University Press , Cambridge .  

  24. Kaaden , N. , Massling , A. , Schladitz , A. , Muller , T. , Kandler , K. , Schiitz , L. and co-authors. 2008. State of Mixing, Shape Factor, Number Size Distribution, and Hygroscopic Growth of the Saharan Anthro-pogenic and Mineral Dust Aerosol at Tinfou, Morocco. Tellus 61B, 10.1111/j.1600-0889.2008.00388.x.  

  25. Kandler , K. , Schiitz , L. , Deutscher , C. , Hofmann , H. , Jäckel , S. and co-authors. 2008. Size distribution, mass concentration, chemical and mineralogical composition, and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus 61B, 10.1111/j.1600-0889.2008.00385.x.  

  26. Knippertz , P. , Deutscher , C. , Kandler , K. , Muller , T. , Schulz , O. and Schiitz , L. 2007. Dust mobilization due to density currents in the Atlas region: Observations from the SAMUM 2006 field campaign. J. Geophys. Res . 112 , D21109, 21110.21029/22007JD008774.  

  27. Knippertz , R , Ansmann , A. , Althausen , D. , Muller , D. , Tesche , M. and co-authors. 2008. Dust mobilization and transport in the Northern Sahara during SAMUM 2006—a meteorological overview. Tellus 61B, 10.1111/j.1600-0889.2008.00380.x.  

  28. Koepke , P. , Hess , M. , Schult , I. and Shenle , E. P . 1997 . Global Aerosol Data Set . MPI-Report No. 243. Max-Planck-Institute for Meteorol-ogy , Hamburg , 44 pp .  

  29. Mahowald , N. M. , Baker , A. R. , Bergametti , G. , Brooks , N. , Duce , R. A. and co-authors. 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochem. Cycles. 19, 1 – 15.  

  30. Maring , H. , Savoie , D. L. , Izaguirre , M. A. , Custals , L. and Reid , J. S . 2003 . Vertical distributions of dust and sea-salt aerosols over Puerto Rico during PRIDE measured from a light aircraft . J. Geophys. Res . 108 , 8587 , 8510.1029/2002JDO02544.  

  31. Miller , R. L. , Tegen , I. and Perlwitz , J . 2004 . Surface radiative forcing by soil dust aerosols and the hydrologic cycle . J. Geophys. Res . 109 , 1 – 24 .  

  32. Moorthy , K. K. , Babu , S. S. , Satheesh , S. K. , Srinivasan , J. and Dutt , C. B. S . 2007 . Dust absorption over the “Great Indian Desert” inferred using ground-based and satellite remote sensing . J. Geophys. Res . 112 , D09206 .  

  33. Nickovic , S. , Kallos , G. , Papadopoulos , A. and Kakaliagou , O. 2001. A model for prediction of desert dust cycle in the atmosphere. J. Geophys. Res . 106 , 18113 – 18130.  

  34. Otto , S. , de Reus , M. , Trautmann , T. , Thomas , A. , Wendisch , M. and co-authors. 2007. Atmospheric radiative effects of an in situ measured Saharan dust plume and the role of large particles. Atmos. Chem. Phys. 7, 4887 – 4903.  

  35. Petzold , A. , Rasp , K. Weinzierl , B. , Esselborn , M. , Hamburger , T. and co-authors. 2008. Saharan dust refractive index and optical properties from aircract-based observations during SAMUM 2006. Tellus 61B, 10.1111/j.1600-0889.2008.00383.x.  

  36. Rasp , K , 2007 . Spektrale Absorption und Brechungsindeac von Saha-rastaub - Ergebnisse der SAMUM-I Messkampagne . Diploma thesis. Ludwig-Maximilians-Universität , Miinchen .  

  37. Reid , J. S. , Jonsson , H. H. , Maring , H. B. , Smirnov , A. , Savoie , D. L. and co-authors. 2003a. Comparison of size and morphological measurements of coarse mode dust particles from Africa. J. Geophys. Res . 108 , 8593, 8510.1029/2002JD002485.  

  38. Reid , J. S. , Kinney , J. E. , Westphal , D. L. , Holben , B. , Welton , E. J. and co-authors. 2003b. Analysis of measurements of Saharan dust by airborne and ground-based remote sensing methods during the Puerto Rico Dust Experiment (PRIDE). J. Geophys. Res . 108 , 8586, 8510.1029/2002JDO02493.  

  39. de Reus , M. , Dentener , F. , Thomas , A. , Borrmann , S. , Stroem , J. and co-authors. 2000. Airborne observations of dust aerosol over the North Atlantic Ocean during ACE 2: Indications for heterogeneous ozone destruction. J. Geophys. Res . 105 , 15263 – 15275.  

  40. Rosenfeld , D. , Rudich , Y. and Lahav , R . 2001 . Desert dust suppress-ing precipitation: a possible desertification feedback loop . PNAS 98 , 5975 – 5980 .  

  41. Schröder , F. and Strom , J . 1997 . Aircraft measurements of sub microm-eter aerosol particles (>7 nm) in the midlatitude free troposphere and tropopause region . Atmos. Res . 44 , 333 – 356 .  

  42. Schiitz , L. and Jaenicke , R . 1974 . Particle number and mass distributions above 10-4cm radius in sand and aerosol of the Sahara Desert . J. AppL Met . 13 , 863 – 870 .  

  43. Schiitz , L. and Jaenicke , R . 1978 . Comprehensive study of physical and chemical properties of the surface aerosols in the Cape Verde Islands region . J. Geophys. Res . 83 , 3585 – 3599 .  

  44. Sokolilc , I. N. , Toon , O. B. and Bergstrom , R. W. 1998. Modeling the rediative characteristics of airborne mineral aerosols at infrared wave-lengths. J. Geophys. Res . 103 , 8813 – 8826.  

  45. Sokolilc , I. N. , Winker , D. M. , Bergametti , G. , Gillette , D. A. , Carmichael , G. and co-authors. 2001. Introduction to special section: outstanding problems in quantifying the radiative impacts of mineral dust. J. Geophys. Res . 106 , 18015 – 18028.  

  46. Strapp , J. W. , Leaitch , W. R. and Liu , P. S. K . 1992 . Hydrated and dried aerosol-size-distribution measurements from the particle mea-suring systems FSSP-300 probe and the deiced PCASP-100X probe . J. Atmos. Ocean. TechnoL 9 , 548 – 555 .  

  47. Tanre , D. , Haywood , J. , Pelon , J. , Leon , J. F. , Chatenet , B. and co-authors. 2003. Measurement and modeling of the Saharan dust radia-tive impact: overview of the Saharan Dust Experiment (SHADE). J. Geophys. Res . 108 , 8574, 8510.1029/2002J1D003273.  

  48. Tesche , M. , Ansmann , A. , Muller , D. , Althausen , D. , Mattis , I. , Heese , B. and co-authors. 2008. Vertical profiling of Saharan dust with Raman lidars and airborne high-spectral-resolution lidar during SAMUM. Tellus 61B, 10.1111/j.1600-0889.2008.00390.x.  

  49. Toledano , C. , Wiegner , M. , Garhammer , M. , Seefeldner , M. , Gasteiger , J. and co-authors. 2008. Spectral aerosol optical depth characterization of desert dust during SAMUM 2006. Tellus 61B, 10.1111/j.1600-0889.2008.00382.x.  

  50. Toon , O. B . and Ackerman , T. P. 1981. Algorithms for the calculation of scattering by stratified spheres. Appl. Opt. 20, 3657 – 3660.  

  51. Veihelmann , B. , Konert , M. and Van Der Zande , W. J . 2006 . Size dis-tribution of mineral aerosol: using light-scattering models in laser particle sizing . AppL Opt . 45 , 6022 – 6029 .  

  52. Virkkula , A. , Ahlquist , N. C. , Covert , D. S. , Arnott , W. P. , Sheridan , P. J. and co-authors. 2005. Modification, calibration and a field test of an instrument for measuring light absorption by particles. Aerosol Sci. TechnoL 39, 68 – 83.  

  53. Wagner , F. , Bortoli , D. , Pereira , S. , Costa , M. , Silva , A. M. and co-authors. 2008. Properties of dust aerosol particles transported to Portugal from the Sahara desert. Tellus 61B, 10.1111/j .1600-0889.2008.00393.x.  

  54. Wiegner , M. , Gasteiger , J. , Kandler , K. , Weinzierl , B. , Rasp , K. and co-authors. 2008. Numerical simulations of optical properties of Sa-haran dust aerosols with emphasis on lidar applications. Tellus 61B, 10.1111/j.1600-0889.2008.00381.x.  

comments powered by Disqus