Start Submission Become a Reviewer

Reading: Size distribution, mass concentration, chemical and mineralogical composition and derived op...

Download

A- A+
Alt. Display

Original Research Papers

Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006

Authors:

K. Kandler ,

Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, DE
X close

L. Schütz,

Institute für Physik der Atmosphäre, Johannes-Gutenberg-Universität, DE
X close

C. Deutscher,

Institute für Physik der Atmosphäre, Johannes-Gutenberg-Universität, DE
X close

M. Ebert,

Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, DE
X close

H. Hofmann,

Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, DE
X close

S. Jäckel,

Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, DE
X close

R. Jaenicke,

Institute für Physik der Atmosphäre, Johannes-Gutenberg-Universität, DE
X close

P. Knippertz,

Institute für Physik der Atmosphäre, Johannes-Gutenberg-Universität, DE
X close

K. Lieke,

Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, DE
X close

A. Massling,

Leibniz-Institut für Troposphärenforschung, DE
X close

A. Petzold,

Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), DE
X close

A. Schladitz,

Leibniz-Institut für Troposphärenforschung, DE
X close

B. Weinzierl,

Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), DE
X close

A. Wiedensohler,

Leibniz-Institut für Troposphärenforschung, DE
X close

S. Zorn,

Institute für Physik der Atmosphäre, Johannes-Gutenberg-Universität, DE
X close

S. Weinbruch

Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, DE
X close

Abstract

During the SAMUM 2006 field campaign in southern Morocco, physical and chemical properties of desert aerosols were measured. Mass concentrations ranging from 30μgm−3 for PM2.5 under desert background conditions up to 300 000μgm−3 for total suspended particles (TSP) during moderate dust storms were measured. TSP dust concentrations are correlated with the local wind speed, whereasPM10 andPM2.5 concentrations are determined by advection from distant sources. Size distributions were measured for particles with diameter between 20 nm and 500μm (parametrizations are given). Two major regimes of the size spectrum can be distinguished. For particles smaller than 500 nm diameter, the distributions show maxima around 80 nm, widely unaffected of varying meteorological and dust emission conditions. For particles larger than 500 nm, the range of variation may be up to one order of magnitude and up to three orders of magnitude for particles larger than 10μm. The mineralogical composition of aerosol bulk samples was measured by X-ray powder diffraction. Major constituents of the aerosol are quartz, potassium feldspar, plagioclase, calcite, hematite and the clay minerals illite, kaolinite and chlorite. A small temporal variability of the bulk mineralogical composition was encountered. The chemical composition of approximately 74 000 particles was determined by electron microscopic single particle analysis. Three size regimes are identified: for smaller than 500 nm in diameter, the aerosol consists of sulphates and mineral dust. For larger than 500 nm up to 50μm, mineral dust dominates, consisting mainly of silicates, and—to a lesser extent—carbonates and quartz. For diameters larger than 50μm, approximately half of the particles consist of quartz. Time series of the elemental composition show a moderate temporal variability of the major compounds. Calcium-dominated particles are enhanced during advection from a prominent dust source in Northern Africa (Chott El Djerid and surroundings). The particle aspect ratio was measured for all analysed particles. Its size dependence reflects that of the chemical composition. For larger than 500 nm particle diameter, a median aspect ratio of 1.6 is measured. Towards smaller particles, it decreases to about 1.3 (parametrizations are given). From the chemical/mineralogical composition, the aerosol complex refractive index was determined for several wavelengths from ultraviolet to near-infrared. Both real and imaginary parts show lower values for particles smaller than 500 nm in diameter (1.55–2.8 × 10−3i at 530 nm) and slightly higher values for larger particles (1.57–3.7 × 10−3i at 530 nm).

How to Cite: Kandler, K., Schütz, L., Deutscher, C., Ebert, M., Hofmann, H., Jäckel, S., Jaenicke, R., Knippertz, P., Lieke, K., Massling, A., Petzold, A., Schladitz, A., Weinzierl, B., Wiedensohler, A., Zorn, S. and Weinbruch, S., 2009. Size distribution, mass concentration, chemical and mineralogical composition and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus B: Chemical and Physical Meteorology, 61(1), pp.32–50. DOI: http://doi.org/10.1111/j.1600-0889.2008.00385.x
2
Views
  Published on 01 Jan 2009
 Accepted on 28 Jul 2008            Submitted on 28 Dec 2007

References

  1. Anderson , J. R. , Buseck , P. R. , Patterson , T. L. and Arimoto , R . 1996 . Characterization of the Bermuda tropospheric aerosol by combined individual-particle and bulk-aerosol analysis . Atmos. Environ . 30 , 319 – 338 .  

  2. Avila , A. , Queralt-Mitjans , I. and Alarcón , M . 1997. Mineralogical com-position of African dust delivered by red rains over northeastern Spain. J. Geophys. Res . 102 , 21977 – 21996.  

  3. Balkanslci , Y. , Schulz , M. , Claquin , T. and Guibert , S . 2007 . Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data . Atmos. Chem. Phys . 7 , 81 – 95 .  

  4. Barthelmy , D . 2007 . Mineralogy database . Available at http : //www.webmineral.com .  

  5. Bauer , S. E. , Ballcanski , Y. , Schulz , M. , Hauglustaine , D. A. and Den-tener , F . 2004 . Global modeling of heterogeneous chemistry on min-eral aerosol surfaces: influence on tropospheric ozone chemistry and comparison to observations . J. Geophys. Res . 109 , D02304 .  

  6. Belyaev , S. P. and Levin , L. M . 1972 . Investigation of aerosol aspiration by photographing particle tracks under flash illumination . J. Aerosol Sci . 3 , 127 – 140 .  

  7. Belyaev , S. P. and Levin , L. M . 1974 . Techniques for collection of representative aerosol samples . J. Aerosol Sci . 5 , 325 – 338 .  

  8. Brindley , G. W . 1980 . Quantitative X-Ray Mineral Analysis of Clays . In: Crystal Structures of Clay Minerals and their X-Ray Identification (eds. G. W. Brindley and G. Brown ). Mineralogical Society , London , 411 – 438 .  

  9. Carlson , T. N. and Caverly , R. S . 1977 . Radiative Characteristics of Saharan Dust at Solar Wavelengths . J. Geophys. Res . 82 , 3141 – 3152 .  

  10. Chester , R. and Johnson , L. R . 1971 . Atmospheric Dusts collected off the West African Coast . Nature 229 , 105 – 107 .  

  11. Chester , R. , Elderfield , H. and Griffin , J. J . 1971 . Dust transported in the North-east and South-east Trade Winds in the Atalntic Ocean . Nature 233 , 474 – 476 .  

  12. Chester , R. , Elderfield , H. , Griffin , J. J. , Johnson , L. R. and Padgham , R. C . 1972 . Eolian dust along the eastern margins of the Atlantic Ocean . Mar Geol . 13 , 91 – 105 .  

  13. Chipera , S. J. and Bish , D. L . 2002 . FULLPAT: a full-pattern quantitative analysis program for X-ray powder diffraction using measured and calculated patterns . J. Appl. Ciystallogr 35 , 744 – 749 .  

  14. Chung , F. H . 1974 . Quantitative interpretation of X-ray diffraction pat-terns of mixtures, I: matrix-flushing method for quantitative multi-component analysis . J. AppL Clystallogr 7 , 519 – 525 .  

  15. Cornelis , W. M. and Gabriels , D . 2004 . A simple model for the predic-tion of the deflation threshold shear velocity of dry loose particles . Sedimentology 51 , 39 – 51 .  

  16. d'Almeida , G. A. 1987 . On the variability of desert aerosol radiative characteristics . J. Geophys. Res . 92 , 3017 – 3026 .  

  17. d'Almeida , G. A. and Schiitz , L. 1983 . Number, mass and volume dis-tributions of mineral aerosol and soils of the Sahara . J. Clim. AppL Meteorol . 22 , 233 – 243 .  

  18. Dentener , F. J. , Carmichael , G. R. , Zhang , Y. , Lelieveld , J. and Crutzen , P. J . 1996. Role of mineral aerosol as a refractive surface in the global troposphere. J. Geophys. Res . 101 , 22869 – 22889.  

  19. Desboeufs , K. V. and Cautenet , G . 2005 . Transport and mixing zone of desert dust and sulphate over Tropical Africa and the Atlantic Ocean region . Atmos. Chem. Phys. Discuss . 5 , 5615 – 5644 .  

  20. Draxler , R. R. and Hess , G. D . 1998 . An overview of the HYSPLIT_4 modelling system for trajectories, dispersion and deposition . AusL MeteoroL Mag . 47 , 295 – 308 .  

  21. Dubovilc , O. , Holben , B. , Eck , T. F. , Smirnov , A. , Kaufman , Y. J. and coauthors. 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci . 59 , 590 – 608.  

  22. Dubovilc , O. , Sinyuk , A. , Lapyonok , T. , Holben , B. N. , Mishchenko , M. and co-authors. 2006. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J. Geophys. Res . 111 , D11208, available at http://aeronet.gsfc.nasa.govinew_web/optical_properties.html.  

  23. Eissa , N. A. , Gomaa , S. S. , Hassaan , M. Y. and Sallam , H. A . 1988 . Mössbauer, X-ray and derivatographic studies on Egyptian Nile clay . Hyperfine Interact . 41 , 775 – 778 .  

  24. Eyre , J. K. and Dickson , D. P. E . 1995. Miissbauer spectroscopy analysis of iron-containing minerals in the Chinese loess. J. Geophys. Res . 100B, 17 925-17 930.  

  25. Fallcovich , A. H. , Ganor , E. , Levin , Z. , Formenti , P. and Rudich , Y . 2001. Chemical and mineralogical analysis of individual mineral dust particles. J. Geophys. Res . 106 , 18029 – 18036.  

  26. Gillette , D. A. and Nagamoto , C . 1993. Size distribution and single parti-cle composition for two dust storms in Soviet central Asia in Septem-ber 1989 and size distribution and chemical composition of local soil. In: Joint Soviet-American Experiment on Arid Aerosol (eds. G. S. Golitsyn , D. A. Gillette , T. Johnson , V. N. Ivanov , S. M. Kolomiyets , and co-editors ). Hydrometeoizdat, St. Petersburg , 135 – 146.  

  27. Glaccum , R. A. and Prospero , J. M . 1980 . Saharan aerosols over the tropical north Atlantic-mineralogy . Mar Geol . 37 , 295 – 321 .  

  28. Goudie , A. S. and Middleton , N. J . 2001 . Saharan dust storms: nature and consequences . Earth-Sci. Rev . 56 , 179 – 204 .  

  29. Guerzoni , S. , Molinaroli , E. and Chester , R . 1997 . Saharan dust inputs to the western Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications . Deep-Sea Res . 1144 , 631 – 654 .  

  30. Haywood , J. and Boucher , O. 2000. Estimated of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev. Geophys. 38, 513 – 543.  

  31. Heintzenberg , J . 2008. The SAMUM-1 experiment over Southern Mo-rocco: overview and introduction. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00403.x .  

  32. Helmert , J. , Heinold , B. , Tegen , I. , Hellmuth , O. and Wendisch , M. 2007. On the direct and semidirect effects of Saharan dust over Europe: a modeling study. J. Geophys. Res . 112 , D13208.  

  33. Hess , M. , Koepke , P. and Schuh , I . 1998 . Optical properties of aerosols and clouds: the software package OPAC . Bull. Am. Met. Soc . 79 , 831 – 844 .  

  34. Hillier , S. and Velde , B . 1991 . Octahedral occupancy and the chemical composition of diagenetic (low-temperature) chlorites . Clay Mineral . 26 , 149 – 168 .  

  35. ICDD . 2002 . Powder Diffraction File PDF-2 . JCPDS - International Center for Diffraction Data, Newton Square, PA , USA .  

  36. Iversen , J. D. and White , B. R . 1982 . Saltation threshold on Earth, Mars and Venus . Sedimentology 29 , 111 – 119 .  

  37. Ivlev , L. S. and Popova , S. I . 1972 . Optical constants of substances of atmospheric aerosol. /zv . Vuz. Fiz . 5 , 91 – 97 .  

  38. Iwasalca , Y. , Shi , G.-Y. , Yamada , M. , Matsuki , A. , Trochkine , D. , and co-authors. 2003. Importance of dust particles in the free troposphere over the Taklamakan Desert: electron microscopic experiments of particles collected with a balloonborne particle impactor at Dunhaug, China. J. Geophys. Res . 108 , https://doi.org/10.1029/2002JD3270 .  

  39. Jacobson , M. Z . 2001 . Global direct radiative forcing due to multicom-ponent anthropogenic and natural aerosols . J. Geophys. Res . 106 , 1551 – 1568 .  

  40. Jaenicke , R . 1983. Aerosol physical properties. In: Report of the Experts Meeting on Aerosols and Their Climatic Effects (eds. A. Deepak and H. E. Gerber ). International Council of Scientific Unions/World Meteorological Organization, Williamsburg, VA, 17 – 31.  

  41. Jaenicke , R . 1988 . Aerosol physics and chemistry . In: Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology (ed. G. Fischer ). Springer , New York , 391 – 457 .  

  42. Jaenicke , R. and Junge , C . 1967 . Studien zur oberen GrenzgroBe des nattirlichen Aerosols . Beitr Phys. Atmos./Contrib. Atmos. Phys . 40 , 129 – 143 .  

  43. Jeong , G.-R. and Sokolilc , I. N . 2007 . Effect of mineral dust aerosols on the photolysis rates in the clean and polluted marine environments . J. Geophys. Res . 112 , D21308 .  

  44. Kaaden , N. , MaBling , A. , Schladitz , A. , Muller , T. , Kandler , K. and co-authors. 2008. State of mixing, shape factor, number size distribution, and hygroscopic growth of the Saharan anthropogenic and mineral dust aerosol at Tinfou, Morocco. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00388.x .  

  45. Kandler , K. , Benker , N. , Bundke , U. , Cuevas , E. , Ebert , M. and co-authors. 2007. Chemical composition and complex refractive index of Saharan Mineral Dust at Izafia, Tenerife (Spain) derived by electron microscopy. Atmos. Environ. 41, 8058 – 8074.  

  46. Karickhoff , S. W. and Bailey , G. W . 1973 . Optical absorption spectra of clay minerals . Clay Clay Miner 21 , 59 – 70 .  

  47. Kaufman , Y. J. , Koren , I. , Remer , L. A. , Tanre , D. , Ginoux , P. and co-authors. 2005. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MOD'S) spacecraft over the Atlantic Ocean. J. Geophys. Res . 110 , https://doi.org/10.1029/2003JD004436 .  

  48. Kiefert , L. , McTainsh , G. H. and Nickling , W. G . 1996 . Sedimentolog-ical characteristics of Saharan and Australian Dusts . In: The Impact of Desert Dust Across the Mediterranean (eds. S. Guerzoni and R. Chester ). Kluwer Academic Publishers , Dordrecht , 183 – 190 .  

  49. Knippertz , R , Ansmann , A. , Althausen , D. , Muller , D. , Tesche , M. and co-authors. 2008. Dust Mobilization and Transport in the Northern Sahara during SAMUM 2006 - A Meteorological Overview. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00380.x .  

  50. Lafon , S. , Rajot , J.-L. , Alfaro , S. C. and Gaudichet , A . 2004 . Quantifi-cation of iron oxides in desert aerosol . Atmos. Environ . 38 , 1211 – 1218 .  

  51. Lafon , S. , Sokolik , I. N. , Rajot , J. L. , Caquineau , S. and Gaudichet , A . 2006 . Characterization of iron oxides in mineral dust aerosols: implications for light absorption . J. Geophys. Res . 111 , D21207 .  

  52. Lesins , G. , Chylek , P. and Lohmann , U . 2002 . A study of internal and external mixing scenarios and its effect on aerosol optical properties and direct radiative forcing . J. Geophys. Res . 107 , D04094 .  

  53. Levin , Z. , Ganor , E. and Gladstein , V . 1996 . The effects of desert par-ticles coated with sulfate on rain formation in the Eastern Mediter-ranean . J. AppL Meteorol . 35 , 1511 – 1523 .  

  54. Marple , V. A. and Willeke , K . 1976 . Impactor design . Atmos. Environ . 10 , 891 – 896 .  

  55. Marticorena , B. and Bergametti , G . 1995. Modeling the atmospheric dust cycle, 1: design of a soil-derived dust emission scheme . J. Geophys. Res . 100 , 16415 – 16430.  

  56. Matsuki , A. , Iwasaka , Y. , Shi , G. , Zhang , D. , Trochlcine , D. and co-authors. 2005. Morphological and chemical modification of mineral dust: observational insight into the heterogeneous uptake of acidic gases. Geophys. Res. Lett. 32, L22806.  

  57. Matthias-Maser , S . 1999 . MOCIS, an automatic mobile cascade im-paction system developed for use at ground and on airborne platforms and suitable for single particle analysis . J. Aerosol Sci . 30 , S367 – 5368 .  

  58. May , K. R. and Clifford , R . 1967 . The impaction of aerosol particles on cylinders, spheres, ribbons and discs . Ann. Occup. Hyg . 10 , 83 – 95 .  

  59. Milcami , M. , Leys , J. , Ishizulca , M. , Yamada , Y. and Heidenreich , S . 2007 . Multi-size saltation process from fallow-wheat-field in Aus-tralia during JADE IOP . In: Proceedings of the IAMASIIUGG 2007 , Perugia , Italy .  

  60. Milcami , M. , Yamada , Y. , Ishizuka , M. , Ishimaru , T. , Gao , W. and co-authors. 2005. Measurement of saltation process over gobi and sand dunes in the Taklimalcan desert, China, with newly developed sand particle counter. J. Geophys. Res . 110 , D18502.  

  61. Moore , D. M. and Reynolds , R. C. J . 1997 . X-Ray Diffracton and the Identification and Analysis of Clay Minerals . Oxford University Press , Oxford , New York .  

  62. Murayed , Y. , Kuzmann , E. and Vertes , A . 2000 . Mössbauer and X-ray investigation of clay minerals originated from Lybia . J. RadioanaL NucL Ch . 246 , 379 – 384 .  

  63. Muller , T. , Schladitz , A. , MaBling , A. , Kaaden , N. , Wiedensohler , A. and co-authors. 2008. Spectral absorption coefficients and imaginary parts of refractive indices of Saharan dust during SAMUM-1. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00399.x .  

  64. O'Hara , S. L. , Clarke , M. L. and Elatrash , M. S . 2006 . Field mea-surements of desert dust deposition in Libya . Atmos. Environ . 40 , 3881 – 3897 .  

  65. Patterson , E. M. , Gillette , D. A. and Stockton , B. H . 1977 . Complex index of refraction between 300 and 700 nm for Saharan aerosols . J. Geophys. Res . 82 , 3153 – 3160 .  

  66. Petzold , A. , Rasp , K. , Weinzierl , B. , Esselborn , M. , Hamburger , T. and co-authors. 2008. Saharan dust absorption and refractive index from aircraft-based observations during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00383.x .  

  67. Philipp , H. R. 1985. Silicon Dioxide ( 5i02), Type a (Crystalline). In: Handbook of Optical Constants of Solids I (ed. E. D. Ralik ). Academic Press, New York, 719 – 747.  

  68. Rasband , W. S . 2006 . Imagel U. S. National Institutes of Health , Bethesda , Maryland , USA . Available at http://rsb.info.nih.gov/iy .  

  69. Rastogi , N. and Sarin , M. M . 2006 . Chemistry of aerosols over a semi-arid region: evidence for acid neutralization by mineral dust . Geophys. Res. Lett . 33 , L23815 .  

  70. Reid , J. S. , Jonsson , H. H. , Maring , H. B. , Smirnov , A. , Savoie , D. L. and co-authors. 2003. Comparison of size and morphological mea-surements of coarse mode dust particles from Africa. J. Geophys. Res . 108 , 8593.  

  71. Rutledge , G. K. , Alpert , J. and Ebuisalci , W . 2006. NOMADS: a climate and weather model archive at the National Oceanic and Atmospheric Administration. Bull. Am. MeteoroL Soc. 87 , 327 – 341. Available at ftp://www.arl.noaa.gov/pub/archives/fn1/.  

  72. Schladitz , A. , Muller , T. , MaBling , A. , Kaaden , N. , Kandler , K. and co-authors. 2008. In situ measurements of optical properties at Tinfou (Morocco) during the Saharan Mineral Dust Experiment SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00397.x .  

  73. Schiitz , L . 1989 . Atmospheric mineral dust-properties and source markers . In: Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport (eds. M. Leinen and M. Sarnthein ). Kluwer Academic Publishers , Dordrecht , 359 – 383 .  

  74. Schiitz , L. and Jaenicke , R . 1974 . Particle number and mass distributions above 10-4 cm radius in sand and aerosol of the Sahara Desert . J. AppL Meteorol . 13 , 863 – 870 .  

  75. Schiitz , L. and Sebert , M . 1987 . Mineral aerosols and source identifica-tion . J. Aerosol Sci . 18 , 1 – 10 .  

  76. Shettle , E. P . 1984 . Optical and radiative properties of a desert aerosol model . In: IRS '84: Current Problems in Atmospheric Radiation (ed. G. Fiocco ). Deepalc Publishing , Hampton , 74 – 77 .  

  77. Sokolilc , I. N. and Toon , O. B . 1999. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths . J. Geophys. Res . 104 , 9423 – 9444 .  

  78. Sokolilc , I. N. , Winker , D. M. , Bergametti , G. , Gillette , D. A. , Carmichael , G. and co-authors. 2001. Introduction to special section: outstanding problems in quantifying the radiative impacts of mineral dust. J. Geophys. Res . 106 , 18015 – 18027.  

  79. Sullivan , R. C. , Guazzotti , S. A. , Sodeman , D. A. and Prather , K. A . 2007 . Direct observations of the atmospheric processing of Asian mineral dust . Atmos. Chem. Phys . 7 , 1213 – 1236 .  

  80. Tafuro , A. M. , Barnaba , F. , De Tomasi , E , Perrone , M. R. and Gobbi , G. P . 2006 . Saharan dust particle properties over the central Mediterranean . Atmos. Res . 81 , 67 – 93 .  

  81. Tegen , I. , Lacis , A. A. and Fung , I . 1996 . The influence of mineral aerosols from disturbed soils on the global radiaton budget . Nature 380 , 419 – 422 .  

  82. Tropf , W. J . 1998 . Calcium carbonate, Calcite (CaCO3) . In: Handbook of Optical Constants of Solids III (ed. E. D. Palik ). Academic Press , New York , 701 – 715 .  

  83. Tsoar , H. and Pye , K . 1987 . Dust transport and the question of desert loess formation . Sedimentology 34 , 139 – 153 .  

  84. VDI . 1997. Measurement of Particulate Precipitations-Microscopic differentiation and size Fractionated Determination of Particle Depo-sition on Adhesive Collection Plates-Sigma-2 sampler. Guideline 2119, Sheet 4. Beuth Verlag, Berlin.  

  85. Warner , T. T . 2004 . Desert Meteorology . Cambridge University Press , Cambridge .  

  86. Weinzierl , B. , Petzold , A. , Esselborn , M. , Wirth , M. , Rasp , K. and co-authors. 2008. Airborne measurements of dust layer properties, parti-cle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00392.x .  

  87. Wiegner , M. , Gasteiger , J. , Kandler , K. , Weinzierl , B. , Rasp , K. and co-authors. 2008. Numerical simulations of optical properties of Saharan dust aerosols with emphasis on linear depolarization ratio. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00381.x .  

  88. Winker , D. M. , Couch , R. H. and McCormick , M. P . 1996 . An overview of LITE: NASA's lidar in-space technology experiment . Proc. IEEE 84 , 164 – 180 .  

  89. Zorn , S . 2005 . Optimierung des “Mobile Cascade Impaction System” Or den Einsatz in ariden Gebieten . Diploma thesis. Institute for At-mospheric Physics, Johannes-Gutenberg-University , Mainz .  

comments powered by Disqus