Start Submission Become a Reviewer

Reading: Spectral aerosol optical depth characterization of desert dust during SAMUM 2006

Download

A- A+
Alt. Display

Original Research Papers

Spectral aerosol optical depth characterization of desert dust during SAMUM 2006

Authors:

C. Toledano ,

Meteorological Institute, Ludwig–Maximilians–Universität, DE
X close

M. Wiegner,

Meteorological Institute, Ludwig–Maximilians–Universität, DE
X close

M. Garhammer,

Meteorological Institute, Ludwig–Maximilians–Universität, DE
X close

M. Seefeldner,

Meteorological Institute, Ludwig–Maximilians–Universität, DE
X close

J. Gasteiger,

Meteorological Institute, Ludwig–Maximilians–Universität, DE
X close

D. Müller,

Leibniz Institute for Tropospheric Research, DE
X close

P. Koepke

Meteorological Institute, Ludwig–Maximilians–Universität, DE
X close

Abstract

The aerosol optical depth (AOD) in the range 340–1550 nm was monitored at Ouarzazate (Morocco) during the Saharan Mineral Dust Experiment (SAMUM) experiment in May–June 2006. Two different sun photometers were used for this purpose. The mean AOD at 500 nm was 0.28, with a maximum of 0.83, and the mean Ångström exponent (AE) was 0.35. The aerosol content over the site changed alternatively from very low turbidity, associated to Atlantic air masses, to moderate dust load, associated to air masses arriving in the site from Algeria, Tunisia and Libya. The dusty conditions were predominant in the measurement period (78% of data), with AOD (500 nm) above 0.15 and AE below 0.4. The spectral features of the AOD under dusty conditions are discussed. Air mass back trajectory analysis is carried out to investigate the origin and height patterns of the dust loaded air masses. The advection of dust occurred mainly at atmospheric heights below 3000 m, where east flow is the predominant. At the 5000m level, the air masses originate mainly over the Atlantic Ocean. Finally the Optical Properties of Aerosols and Clouds (OPAC) model is used to perform a set of simulations with different aerosol mixtures to illustrate the measured AOD and AE values under varying dust concentrations, and a brief comparison with other measurement sites is presented.

How to Cite: Toledano, C., Wiegner, M., Garhammer, M., Seefeldner, M., Gasteiger, J., Müller, D. and Koepke, P., 2009. Spectral aerosol optical depth characterization of desert dust during SAMUM 2006. Tellus B: Chemical and Physical Meteorology, 61(1), pp.216–228. DOI: http://doi.org/10.1111/j.1600-0889.2008.00382.x
1
Views
  Published on 01 Jan 2009
 Accepted on 1 Aug 2008            Submitted on 28 Dec 2007

References

  1. Arimoto , R . 2001 . Eolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition . Earth Sci. Re v . 54 , 29 – 42 .  

  2. Avila , A. , Queralt-Mitjans , I. and AlarcOn , M . 1997 . Mineralogical com-position of African dust delivered by red rains over north-eastern Spain . J. Geophys. Res . 102 , 21 977-21 996 .  

  3. Angstrom , A . 1961 . Techniques of determining the turbidity of the at-mosphere . Tellus 13 , 214 – 223 .  

  4. Bergametti , G. , Gomes , L. , Coude-Gaussen , G. , Rognon , P. and Coustumer , M . 1989 . African dust observed over Canary Islands: source regions identification and transport pattern for some summer situation . J. Geophys. Res . 94 , 14855-14 864 .  

  5. Chiapello , I. , Moulin , C. and Prospero , J. M . 2005 . Understanding the long-term variability of African dust transport across the Atlantic as recorded in both Barbados surface concentrations and large-scale Total Ozone Mapping Spectrometer (TOMS) optical thickness . J. Geophys. Res . 110 , D18510 .  

  6. D'Almeida , G . 1987 . On the variability of desert aerosol radiative char-acteristics . J. Geophys. Res . 92 ( D3 ), 3017 – 3026 .  

  7. Draxler , R. and Rolph , G. 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html). Technical report, NOAA.  

  8. Dubovilc , O. , Holben , B. , Eck , T. , Smirnov , A. , Kaufman , Y. and co-authors. 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci . 59 , 590 – 608.  

  9. Eck , T. , Holben , B. , Reid , J. , Dubovilc , O. , Smirnov , A., O' and co-authors. 1999. The wavelength dependence of the optical depth of biomass burning, urban and desert dust aerosols. J. Geophys. Res . 104 , 31333 – 31350.  

  10. Freudenthaler , V , Esselborn , M. , Wiegner , M. , Heese , B. , Tesche , M. and co-authors. 2008. Depolarization-ratio profiling at several wavelengths in pure Saharan dust during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00396.x .  

  11. Goudie , A. and Middleton , N . 2001 . Saharan dust storms: nature and consequences . Earth-Sci. Re v . 56 , 179 – 204 .  

  12. Guerzoni , S. and Chester , R . 1996 . The Impact of the Desert Dust Across the Mediterranean . Kluwer Academic Publishers, Norwell , MA .  

  13. Gueymard , C . 1995 . Smarts2 , a simple model of the atmospheric ra-diative transfer of sunshine: algorithms and performance assessment. Report no. FSEC-PF-270-95 , Florida Solar Energy Center. Cocoa , Florida .  

  14. Haywood , J. , Francis , P. , Dubovilc , O. , Glew , M. and Holben , B. 2003a. Comparison of aerosol size distributions, radiative properties, and optical depths determined by aircraft observations and Sun pho-tometers during SAFARI 2000. J. Geophys. Res . 108 (D13), 8471, https://doi.org/10.1029/2002JD002250 .  

  15. Haywood , J. , Francis , P. , Osborne , S. , Glew , M. , Loeb , N. and co-authors. 2003b. Radiative properties and direct radiative effect of saharan dust measured by the c-130 aircraft during shade, 1: solar spectrum. J. Geophys. Res . 108 (D18), 8577, https://doi.org/10.1029/2002JD002687 .  

  16. Heintzenberg , J . 2008. The SAMUM-1 experiment over Southern Mo-rocco: Overview and introduction. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00403.x .  

  17. Hess , M. , Koepke , P. and Schuh , I . 1998 . Optical Properties of Aerosols and Clouds: The Software Package OPAC . Bull. Am. MeteoroL Soc . 79 , 831 – 844 .  

  18. Holben , B. , Eck , T. , Slutsker , I. , Tanre , D. , Buis , J. and co-authors. 1998. AERONET- a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 66, 1 – 16.  

  19. Holben , B. , Tanre , D. , Smirnov , A. , Eck , T. , Slutsker , I. and co-authors. 2001. An emerging ground-based aerosol climatology: aerosol optical depth from aeronet. J. Geophys. Res . 106 , 12067 – 12097.  

  20. Kandler , K. , Deutscher , C. , Ebert , M. , Hofmann , H. , Jäckel , S. and co-authors. 2008. Size distributions, mass concentrations, chemical and mineralogical composition, and derived optical parameters of the boundary layer aerosol at Tinfou, Morocco, during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00385.x .  

  21. Kasten , F. and Young , A. T . 1989 . Revised optical air mass tables and approximation formula . AppL Opt . 28 , 4735 – 4738 .  

  22. Kaufman , Y. J. , Tanre , D. , Dubovilc , O. , Karnieli , A. and Remer , L. A. 2001 . Absorption of sunlight by dust as inferred from satellite and groundbased remote sensing. Geophys. Res. Lett. 28 , 1479 – 1482.  

  23. Kaufman , Y. J. , Koren , I. , Remer , L. A. , Tante' , D. , Ginoux , P. and co-authors. 2005. Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MOD'S) space-craft over the Atlantic Ocean. J. Geophys. Res. 110, D10512.  

  24. Koepke , P. , Hess , M. , Schuh , I. and Shettle , E . 1997 . Global aerosol data set . Technical report , MPI Meteorologie Hamburg Report No. 243 , 44 PP .  

  25. Make , J. , Boughanmi , A. , Eaton , F. and Wendler , G . 1984 . Turbidity measurements of saharan aerosol and their effects on atmospheric heating and planetary reflectivity . Arch. Met. Geoph. Biocl . B 35 , 203 – 220 .  

  26. Muller , T. , Schladitz , A. , Massling , A. , Kaaden , N. , Wiedensohler , A. and co-authors. 2008. Spectral absorption coefficients and re-fractive index of Saharan dust during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00399.x .  

  27. Myhre , G. , Grini , A. , Haywood , J. , Stordal , F. , Chatenet , B. and co-authors. 2003. Modeling the radiative impact of mineral dust during the Saharan Dust Experiment (SHADE) campaign. J. Geophys. Res . 108 (D18), 8579, https://doi.org/10.1029/2002JD002566 .  

  28. Pace , G. , di Sarra , A. , Meloni , D. , Piacentino , S. and Chamard, P. 2006. Aerosol optical properties at Lampedusa (Central Mediterranean), 1: influence of transport and identification of different aerosol types. Atmos. Chem. Phys. 6, 697 – 713.  

  29. Petzold , A. , Rasp , K. , Weinzierl , B. , Esselborn , M. , Hamburger , T. and co-authors. 2008. Saharan dust absorption and refractive index from aircraft-based observations during SAMUM 2006. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00383.x .  

  30. Prospero , J . 1999 . Long range transport of mineral dust in the global atmosphere: impact of african dust on the environment of the south-eastern united states . Proc. Natl. Acad. Sci. USA 96 , 3396 – 3403 .  

  31. Prospero , J. M. , Ginoux , R , Tones , O. , Nicholson , S. E. and Gill , T. E. 2002. Environmental characterization of global sources of atmo-spheric soil dust identified with the NIMBUS 7 Total Ozone Map-ping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40 ( 1 ), 1002, https://doi.org/10.1029/2000RG000095 .  

  32. Raes , F. , Bates , T. , McGovern , F. and Liederkeke , M . 2000 . The sec-ond aerosol characterization experiment (ACE2): general context and main results . Tellus 52B , 111 – 126 .  

  33. Rodriguez , S. , Querol , X. , Alastuey , A. , Kallos , G. and Kakaliagou , O. 2001. Saharan dust contributions to PM10 and TSP levels in southern and eastern Spain. Atmos. Environ. 35, 2433 – 2447.  

  34. Ryan , D. , Derwent , R. , Manning , A. , Redington , A. , Corden , J. and co-authors . 2002. The origin of high particulate concentrations over the United Kingdom, March 2000. Atmos. Environ. 36, 1363 – 1378.  

  35. Seefeldner , M. , Oppenreider , A. , Rabus , D. , Reuder , J. , Schreier , M. and co-authors. 2004. A two-axis tracking system with datalogger. J. Atmos. Ocean. Tech. 21, 975 – 979.  

  36. Smimov , A. , Holben , B. N. , Eck , T. F. and Dubovilc , O. 2000. Cloud-Screening and Quality Control Algorithms for the AERONET Database. Remote Sens. Environ. 73, 337 – 349.  

  37. Smirnov , A. , Holben , B. , Kaufman , Y. , Dubovilc , O. , Eck , T. and co-authors. 2002. Optical properties of atmospheric aerosol in maritime environments. J. Atm. Sci. 59, 501 – 523.  

  38. Sokolilc , I. N. , Winker , D. M. , Bergametti , G. , Gillette , D. A. , Carmichael , G. and co-authors. 2001. Introduction to special section: outstanding problems in quantifying the radiative impacts of mineral dust. J. Geophys. Res . 106 , 18015 – 18027.  

  39. Stohl , A . 1998 . Computation, accuracy and applications of trajectories: a review and bibliography . Atmos. Environ . 32 , 947 – 966 .  

  40. Tanre , D. , Devaux , C. , Herman , M. , Santer , R. and Gac , J . 1988. Radia-tive properties of desert aerosols by optical ground-based measure-ments at solar wavelengths. J. Geophys. Res . 93 , 14223 – 14231.  

  41. Tanre , D. , Haywood , J. , Pelon , J. , Leon , J. , Chatenet , B. and co-authors. 2003. Measurement and modeling of the Saharan dust radiative im-pact: overview of the Saharan Dust Experiment (SHADE). J. Geophys. Res . 108 , SAH 1.  

  42. Toledano , C. , Cachorro , V. , Berjon , A. , de Frutos , A. M. , Sorribas , M. and co-authors. 2007. Aerosol optical depth and Angstrom exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Q. J. R. Meteorol. Soc. 133, 795 – 807.  

  43. von Hoyningen-Huene , W. , Dinter , T. , Kokhanovsky , A. , Burrows , J. and M., D. 2008. Measurements of desert dust optical characteristic at Porte au Sahara during SAMUM. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00405.x .  

  44. Wagner , F. , Schreier , M. , Seefeldner , M. , Rabus , D. and Koepke , P . 2003 . Ssara—a new and accurate sunradiometer—suitable for measuring dust . In: Proceedings of the 2nd International Workshop on Mineral Dust, 10-12 September , Paris , France .  

  45. Wagner , F. , Bortoli , D. , Pereira , S. , Costa , M. , Silva , A. and co-authors. 2008. Properties of dust aerosol particles transported to Portugal from the Sahara desert. Tellus 61B , https://doi.org/10.1111/j.1600-0889.2008.00393.x .  

  46. Weinzierl , B. , Petzold , A. , Esselborn , M. , Wirth , M. , Rasp , K. and co-authors. 2008. Airborne measurements of dust layer properties, particle size distribution and mixing state of Saharan dust during SAMUM 2006. Tellus 61B , https://doi.org/10.1111/j.1600-0889 . 2008. 00392.x.  

  47. Werhli , C . 2000 . Calibration of filter radiometers for determination of atmospheric optical depth . Met rologia 37 , 419 – 422 .  

  48. Wiegner , M. , Gasteiger , J. , Kandler , K. , Weinzierl , B. , Rasp , K. and co-authors. 2008. Numerical simulations of optical properties of Saharan dust aerosols with emphasis on linear depolarization ratio. Tellus 61B, https://doi.org/10.1111/j.1600-0889.2008.00381.x .  

comments powered by Disqus