Start Submission Become a Reviewer

Reading: Ocean ventilation as a driver of interannual variability in atmospheric potential oxygen

Download

A- A+
Alt. Display

Original Research Papers

Ocean ventilation as a driver of interannual variability in atmospheric potential oxygen

Authors:

Roberta C. Hamme ,

School of Earth and Ocean Sciences, University of Victoria, CA
X close

Ralph F. Keeling

Scripps Institution of Oceanography, University of California, US
X close

Abstract

We present observations of interannual variability on 2–5 yr timescales in atmospheric potential oxygen (APO≈O2+CO2) from the Scripps Institution of Oceanography global flask sampling network. Interannual variations in the tracer APO are expected to arise from air–sea fluxes alone, because APO is insensitive to exchanges with the terrestrial biosphere. These interannual variations are shown to be regionally coherent and robust to analytical artefacts. We focus on explaining a feature dominant in records from the Northern Hemisphere stations, marked by increasing APO in the late 1990s, followed by an abrupt drawdown in 2000–2001. The timing of the drawdown matches a renewal of deep convection in the North Atlantic, followed the next year by a severe winter in the western North Pacific that may have allowed ventilation of denser isopycnals than usual. We find a weak correlation between changes in the interhemispheric APO difference and El Ni˜no indices, and the observations show no strong features of the 1997–98 El Ni˜no. Comparisons with estimates of variations in ocean productivity and ocean heat content demonstrate that these processes are secondary influences at these timescales. We conclude that the evidence points to variability in ocean ventilation as the main driver of interannual variability in APO.

How to Cite: Hamme, R.C. and Keeling, R.F., 2008. Ocean ventilation as a driver of interannual variability in atmospheric potential oxygen. Tellus B: Chemical and Physical Meteorology, 60(5), pp.706–717. DOI: http://doi.org/10.1111/j.1600-0889.2008.00376.x
  Published on 01 Jan 2008
 Accepted on 14 Aug 2008            Submitted on 20 Feb 2008

References

  1. Anderson , L. A . 1995 . On the hydrogen and oxygen content of marine phytoplanlcton. Deep-Sea Res . 142 , 1675 – 1680 .  

  2. Battle , M. , Fletcher , S. M. , Bender , M. L. , Keeling , R. F. , Man-ning , A. C. , Gruber , N. , Tans , P. P. , Hendricks , M. B. , Ho , D. T. , Simonds , C. , Mika , R. and Paplawsky , W . 2006 . Atmospheric poten-tial oxygen: New observations and their implications for some atmo-spheric and oceanic models. Global Biogeochem. Cycles 20 , GB1010, https://doi.org/10.1029/2005GB002534 .  

  3. Behrenfeld , M. J. and Fallcowski , P. G . 1997 . Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr 42 , 1 – 20 .  

  4. Behrenfeld , M. J. , O'Malley , R. T. , Siegel , D. A. , McClain , C. R. , Sarmiento , J. L. , Feldman , G. C. , Milligan , A. J. , Falkowslci , P. G. , Letelier , R. M. and Boss , E. S . 2006 . Climate-driven trends in con-temporary ocean productivity. Nature 444 , 752 – 755 .  

  5. Bender , M. L. , Battle , M. and Keeling , R. E 1998 . The 02 balance of the atmosphere: A tool for studying the fate of fossil-fuel CO2. Annu. Rev. Energy Envion . 23 , 207 – 223 .  

  6. Bender , M. L. , Ho , D. T. , Hendricks , M. B. , Mika , R. , Battle , M. O. , Tans , P. P. , Conway , T. J. , Stutevant , B . and Cassar , N . 2005. Atmospheric 02/N2 changes 1993-2002: Implications for the partitioning of fossil fuel CO2 sequestration. Global Biogeochem. Cycles 19 , GB4017, https://doi.org/10.1029/2004GB002410 .  

  7. Bopp , L. , Le Quere , C. , Heimann , M. , Manning , A. C. and Monfray , P . 2002 . Climate-induced oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochem. Cycles 16 , https://doi.org/10.1029/2001GB001445 .  

  8. Deutsch , C. , Emerson , S. and Thompson , L . 2006 . Physical-biological interactions in North Pacific oxygen variability. J. Geophys. Res . 1111 , C09590 , https://doi.org/10.1029/2005JC003179 .  

  9. Ebisuzalci , W . 1997 . A method to estimate the statistical significance of a correlation when the data are serially correlated. J. Climate 10 , 2147 – 2153 .  

  10. Emerson , S. , Mecicing , S. and Abell , J . 2001 . The biological pump in the subtropical North Pacific Ocean: Nutrient sources, Redfield ratios, and recent changes. Global Biogeochem. Cycles 15 , 535 – 554 .  

  11. Friedrich , T. , Oschlies , A. and Eden , C . 2006 . Role of wind stress and heat fluxes in interannual-to-decadal variability of air-sea CO2 and 02 fluxes in the North Atlantic. Geophys. Res. Lett . 33 , L21504 , https://doi.org/10.1029/2006GL026538 .  

  12. Gruber , N. , Gloor , M. , Fan , S.M. and Sarmiento , J. L . 2001 . Air-sea flux of oxygen estimated from bulk data: Implications for the marine and atmospheric oxygen cycles. Global Biogeochem. Cycles 15 , 783 – 803 .  

  13. Johnson , G. C. and Gruber , N . 2007 . Decadal water mass variations along 20°W in the Northeastern Atlantic Ocean. Prog. Oceanogr . 73 , 277 – 295 .  

  14. Kalnay , E. and co-authors . 1996 . The NCEP/NCAR 40-year Reanalysis Project. Bull. Amer Meteor Soc . 77 , 437 - 471 .  

  15. Kawabata , H. , Narita , H. , Harada , K. , Tsunogai , S . and Kusakabe , M . 2003. Air-sea gas transfer velocity in stormy winter estimated from radon deficiency. J. Oceanogr 59 , 651 - 661 .  

  16. Keeling , R. E 1988 . Development of an Interferometric Oxygen Analyzer for Precise Measurement of the Atmospheric 02 Mole Fraction , PhD Thesis, Harvard University, Cambridge, Mass.  

  17. Keeling , R. F. and Garcia , H . 2002 . The change in oceanic 02 inventory associated with recent global warming. Proc. Natl. Acad. Sci. USA 99 , 7848 – 7853 .  

  18. Keeling , C. D. and Revelle , R . 1985 . Effects of El-Nifm Southern Oscil-lation on the atmospheric content of carbon-dioxide. Meteoritics 20 , 437 – 450 .  

  19. Keeling , R. F. and Severinghaus , J. P . 2000 . Atmospheric oxygen and the carbon cycle. In: The Carbon Cycle (eds T. M. L. Wigley, and D. S. Schimel). Cambridge University Press, Cambridge, 134-140. Keeling , C. D. , Piper , S. C. , Robert , B. , Wahlen , B. M. , Whorf , T. P. , Heimann , M . and Meijer , H. A. 2005. Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: Observations and carbon cycle interpretations. In: A History of Atmo-spheric CO2 and its Effects on Plants, Animals, and Ecosystems (eds J. R . Ehleringer , T. E . Cerling , and M. D . Dearing ). Springer Science , New York, NY , 83 - 113 .  

  20. Keeling , R. F. , Manning , A. C. , McEvoy , E. M. and Shertz , S. R . 1998a . Methods for measuring changes in atmospheric 02 concentration and their application in southern hemisphere air. J. Geophys. Res . 103 , 3381 – 3397 .  

  21. Keeling , R. F. , Stephens , B. B. , Najjar , R. G. , Doney , S. C. , Archer , D. and Heimann , M . 1998b . Seasonal variations in the atmospheric 02/N2 ratio in relation to the kinetics of air-sea gas exchange. Global Biogeochem. Cycles 12 , 141 – 163 .  

  22. Keeling , R. F. , Manning , A. C. , Paplawsky , W. J. and Cox , A. C . 2007 . On the long-term stability of reference gases for atmospheric 02/N2 and CO2 measurements. Tellus 59B , 3 – 14 .  

  23. Keeling , R. F. , Najjar , R. P. , Bender , M. L. and Tans , P. P. 1993. What atmospheric oxygen measurements can tell us about the global carbon cycle. Global Biogeochem. Cycles 7 , 37 - 67 .  

  24. Keeling , R. F. , Piper , S. C. and Heimann , M . 1996 . Global and hemi-spheric CO2 sinks deduced from changes in atmospheric 02 concen-tration. Nature 381 , 218 – 221 .  

  25. Lazier , J. , Hendry , R. , Clarke , A. , Yashayaev , I . and Rhines , P. 2002. Convection and restratification in the Labrador Sea, 1999-2000. Deep-Sea Res . 149 , 1819– 1835 .  

  26. Le Quere , C. , Rödenbeck , C. , Buitenhuis , E. T. , Conway , T. J. , Langenfelds , R. , Gomez, A. , Labuschagne, C. , Ramonet , M. , Nalcazawa , T. , Metzl , N. , Gillett , N . and Heimann , M . 2007. Satu-ration of the Southern Ocean CO2 sink due to recent climate change. Science 316 , 1735-1738, https://doi.org/10.1126/science.1136188 .  

  27. Levitus , S. ed . 2005 . World Ocean Atlas, NOAA Atlas NESDIS 61 , U.S. Government Printing Office, Washington , DC .  

  28. Levitus , S. , Antonov , J. and Boyer , T . 2005 . Warming of the world ocean, 1955-2003. Geophys. Res. Lett . 32 , L02604 , https://doi.org/10.1029/2004GL021592 .  

  29. Manning , A. C . 2001 . Temporal Variability of Atmospheric Oxygen from both Continuous Measurements and a Flask Sampling Network: Tools for Studying the Global Carbon Cycle . PhD Thesis , University of California , San Diego .  

  30. Manning , A. C. and Keeling , R. F . 2006 . Global oceanic and land biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus 58B , 95 – 116 .  

  31. Marland , G. , Boden , T. A. and Andres , R. J . 2007 . Global, regional, and national CO2 emissions. In: Trends: A Compendium of Data on Global Change , Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn.  

  32. McKinley , G. A. , Follows , M. J. , Marshall , J . and Fan, S.-M. 2003. Interannual variability of air-sea 02 fluxes and the determination of CO2 sinks using atmospheric 02/N2. Geophys. Res. Lett . 30 , 1101, https://doi.org/10.1029/2002GL016044 .  

  33. Naegler , T. , Ciais , P., On, J. C., Aumont, 0. and Rödenbeck, C. 2007. On evaluating ocean models with atmospheric potential oxygen. Tellus 59B , 138 - 156 .  

  34. Nevison , C. D. , Mahowald , N. M. , Doney , S. C. , Lima , I. D. and Cassar , N. 2008. Impact of variable air-sea 02 and CO2 fluxes on atmospheric potential oxygen (APO) and land-ocean carbon sink partitioning. Bio-geosciences , 5 , 875 - 889 .  

  35. Ono , T. , Midorilcawa , T. , Watanabe , Y. W. , Tadokoro , K. and Saino , T . 2001 . Temporal increases of phosphate and apparent oxygen utiliza-tion in the subsurface waters of western subarctic Pacific from 1968 to 1998. Geophys. Res. Lett . 28 , 3285 – 3288 .  

  36. Patra , P. K. , Ishizawa , M. , Maksyutov , S. , Nalcazawa , T. and Inoue , G . 2005 . Role of biomass burning and climate anoma-lies for land-atmosphere carbon fluxes based on inverse model-ing of atmospheric CO2. Global Biogeochem. Cycles 19 , GB3005, https://doi.org/10.1029/2004GB002258 .  

  37. Plattner , G. K. , Joos , F. and Stocker , T. E 2002 . Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Bio-geochem. Cycles 16 , 1096 .  

  38. Qiu , B. and Chen , S . 2006 . Decadal variability in the formation of the North Pacific Subtropical Mode Water: Oceanic versus atmospheric control. J. Phys. Oceanogr 36 , 1365 – 1380 .  

  39. Rayner , P. J. , Enting , I. G. , Francey , R. J. and Langenfelds , R . 1999. Reconstructing the recent carbon cycle from atmospheric CO2, 13C and 02/N2 observations. Tellus 51B , 213 - 232 .  

  40. Rödenbeck , C. , Houweling , S. , Gloor , M. and Heimann , M . 2003 . CO2 flux history 1982-2001 inferred from atmospheric data using a global inversion of atmospheric transport. Atmos. Chem. Phys . 3 , 1919 – 1964 .  

  41. Rödenbeck , C. , Quere , C. L. , Heimann , M. and Keeling , R . 2008 . In-terannual variability in oceanic biogeochemical processes inferred by inversion of atmospheric 02/N2 and CO2 data. Tellus 60B , https://doi.org/10.1111/j.1600-0889.2008.00375.x .  

  42. Ronslci , S. and Buda's , G . 2005 . Time series of winter con-vection in the Greenland Sea. J. Geophys. Res . 110 , C04015 , https://doi.org/10.1029/2004JC002318 .  

  43. Schuster , U. and Watson , A. J . 2006 . A variable and decreasing sink for atmospheric CO2 in the North Atlantic. J. Geophys. Res . 112 , C11006 , https://doi.org/10.1029/2006JC003941 .  

  44. Severinghaus , J. P . 1995 . Studies of the Terrestrial 02 and Carbon Cycles in Sand Dune Gases and in Biosphere 2. PhD Thesis, Columbia Univ. Shcherbina , A. L. , Talley , L. D. and Rudnick , D. L. 2004. Dense wa-ter formation on the northwestern shelf of the Okhotsk Sea: 1. Di-rect observations of brine rejection. J. Geophys. Res . 109 , C09508 , https://doi.org/10.1029/2003JC002196 .  

  45. Stephens , B. B. , Keeling , R. E , Heimann , M. , Six , K. D. , Murnana , R. and Caldeira , K . 1998 . Testing global ocean carbon cycle models using measurements of atmospheric 02 and CO2 concentration. Global Biogeochem. Cycles 12 , 213 – 230 .  

  46. Talley , L. D . 1997 . North Pacific Intermediate Water transports in the mixed water region. J. Phys. Oceanogr 27 , 1795 – 1803 .  

  47. Talley , L. D. , Lobanov , V , Ponomarev , V. , Salyuk , A. , Tishchenko , R , Zhabin , I. and Riser , S . 2003 . Deep convection and brine rejection in the Japan Sea. Geophys. Res. Lett . 30 , 1159 , https://doi.org/10.1029/2002GL016451 .  

  48. Thompson , D. W. J. and Wallace , J. M . 2001 . Regional climate im-pacts of the Northern Hemisphere annular mode. Science 293 , 85 – 89 .  

  49. Tohjima , Y. , Mulcai , H. , Machida , T. , Nojiri , Y . and Gloor , M . 2005. First measurements of the latitudinal atmospheric 02 and CO2 distri-butions across the western Pacific. Geophys. Res. Lett ., (17), L17805, https://doi.org/10.1029/2005/GL023311 .  

  50. Tohjima , Y. , Mukai , H. , Nojiri , Y. , Yamagishi , H . and Machida , T . 2008. Atmospheric 02/N2 measurements at two Japanese sites: Estimation of global oceanic and land biotic carbon sinks and analysis of the variation in atmospheric potential oxygen (APO). Tellus 60B , 213 - 225 .  

  51. Verdy , A. , Duticiewicz , S. , Follows , M. J. , Marshall , J. and Czaja , A . 2007 . Carbon dioxide and oxygen fluxes in the Southern Ocean: Mechanisms of interannual variability. Global Biogeochem. Cycles 21 , GB2020, https://doi.org/10.1029/2006GB002916 .  

  52. Willis , J. K. , Lyman , J. M. , Johnson , G. C. and Gilson , J . 2007 . Correc-tion to “Recent cooling of the upper ocean”. Geophys. Res. Lett . 34 , L16601 , https://doi.org/10.1029/2007GL030323 .  

  53. Willis , J. K. , Roemmich , D. and Cornuelle , B . 2004 . Interannual variability in upper ocean heat content, temperature and ther-mosteric expansion on global scales. J. Geophys. Res . 109 , C12036 , https://doi.org/10.1029/2003JC002260 .  

  54. Yashayaev , I . 2007 . Hydrographic changes in the Labrador Sea, 1960-2005. Prog. Oceanogr 73 , 242 – 276 .  

comments powered by Disqus