Start Submission Become a Reviewer

Reading: Nitrogen cycling drives a strong within-soil CO2-sink

Download

A- A+
Alt. Display

Original Research Papers

Nitrogen cycling drives a strong within-soil CO2-sink

Authors:

Siegfried Fleischer ,

Halmstad University, SE
X close

Ivo Bouse

Halmstad University, SE
About Ivo
Associated with the study since 2004.
X close

Abstract

For about three decades, it has not been possible to completely balance global carbon emissions into known pools. A residual (or ‘missing’) sink remains. Here evidence is presented that part of soil respiration is allocated into an internal soil CO2-sink localized to the saprophytic subsystem (roots excluded). The process occurs in forest, agricultural and grassland soils and is favoured by high N-deposition. Chemoautotrophic nitrification has a key role, and the most efficient internal CO2-sequestration occurs concurrently with lowest soil nitrate (NO3 -) concentrations, despite considerable N-loading. Not until drastic N-supply occurs, does the CO2-sink successively breakdown, and nitrate concentrations increase, leading to NO3 −-leaching.Within-soil CO2-uptake seems to be of the same magnitude as the missing carbon sink. It may be gradually enforced by the ongoing input of nitrogen to the biosphere.

How to Cite: Fleischer, S. and Bouse, I., 2008. Nitrogen cycling drives a strong within-soil CO2-sink. Tellus B: Chemical and Physical Meteorology, 60(5), pp.782–786. DOI: http://doi.org/10.1111/j.1600-0889.2008.00374.x
  Published on 01 Jan 2008
 Accepted on 4 Aug 2008            Submitted on 20 Feb 2008

References

  1. Anthoni , P. M , Knohl , A. , Rebmann , C. , Freibauer , A. , Mund , M. and co-authors . 2004 . Forest and agricultural land use dependent CO2 exchange in Thuringia, Germany. Glob. Change Biol . 10 , 2005– 2019 .  

  2. Baldocchi , D. and Gu , L . 2003 . Multiple ecosystem interactions lead to overall reduced growth in atmospheric CO2 concentration. Glob. Change News Lett . 54 , 23 – 24 .  

  3. Cone , M. D. and Lamersdorf , N. P . 2004 . Reversal of nitrogen saturation after long-term deposition reduction: impact on soil nitrogen cycling. Ecology 85 , 3090 – 3104 .  

  4. Fleischer , S . 2003 . CO2 deficit in temperate forest soils receiving high atmospheric N-deposition. Ambio . 32 , 2 – 5 .  

  5. Galloway , J. N. , Dentener , F. J. , Capone , D. G. , Boyer , E. W. , Howarth , R. W. and co-authors . 2004 . Nitrogen cycles: past, present and future. Biogeochemistiy 70 , 153 - 226 .  

  6. Gauger , T. , Anshelm , E , Schuster , H. , Erisman , J. W. , Vermeulen , A. T. and co-authors . 2002 . Mapping of ecosystem specific long-term trends in deposition loads and concentrations of air pollutants in Germany and their comparison with critical loads and critical levels, Part 1: Deposition Loads 1990-1999. Federal Environ-mental Agency,Berlin. 207 pp. http://www.nav.uni-stuttgart.de/navigation/forschung/critical_loads/EB_29942210T1.pdf.  

  7. Gerstberger , P. (ed.) . 2001 . Die BITOK-Untersuchungsflächen im Fichtelgebirge und Steigerwald (in German). Bayreuther Institut fur Terrestrische Okosystemforschung, 194 pp., ISSN 0944-4122. Grip, H. 2006. Environmental Effects of Intensive Forest Production Systems (in Swedish). Res. Report 27, Department of Forest Ecology, UmeA., 12pp., ISBN 91-576-7161-3.  

  8. Griinwald , T. and Bernhofer , V . 2007 . A decade of carbon, water and energy flux measurements of an old spruce forest at the Anchor Station Tharandt. Tellus 59B , 387 – 396 .  

  9. Hagopian , D. S. and Riley , J. G . 1998 . A closer look at the bacteriology of nitrification. Agric. Eng . 18 , 223 – 244 .  

  10. Houghton , R. A . 2003 . Why are estimates of the terrestrial carbon bal-ance so different? Glob. Change Biol . 9 , 500 – 509 .  

  11. Knohl , A. , Schultze , E.-D ., Kolle , O. and Buchmann , N . 2003 . Large carbon uptake by an unmanaged 250-year-old deciduous forest in Central Germany . Agric. Forest Meteorol . 118 , 151 - 167 .  

  12. Mund , M . 2004 . Carbon pools of European beech forests (Fagus sylvat-ica) under different silvicultural management. ISSN 0939-1347,256 pp.  

  13. Nadelhoffer , K. J. , Emmet , B. A. , Gundersen , R , Kjonas , O. J. , Koop-mans , C. J . and co-authors . 1999 . Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests . Nature 398 , 145 - 148 .  

  14. Raich J. W. , Potter , C. S . and Bhagawati , D . 2002 . Interannual variability in global soil respiration . 1980-1994 . Glob. Change Biol . 8 , 800 – 812 .  

  15. Rodhe , H. , Langner , J. , Gallardo , L . and Kjellström , E . 1995 . Global scale transport of acidifying pollutants . Water Air Soil PolluL 85 , 37 - 50 .  

  16. Spangenberg , A. and Kölling , C . 2004 . Nitrogen deposition and nitrate leaching at forest edges exposed to high ammonia emissions in south-ern Bavaria. Water Air Soil PolluL 152 , 233 – 255 .  

  17. Stark , J. M . and Hart , S. C . 1997 . High rates of nitrification and ni-trate turnover in undisturbed coniferous forests . Nature 385 , 61 - 64 .  

  18. Underhill , S. E. and Prosser , J. I. 1987. Surface attachment of nitryfying bacteria and their inhibition by potassium ethyl xanthate. Microb. EcoL 14 , 129 - 139 .  

  19. Vazquez-Rodriguez , G. A. and Rols , J. L. 1997. Study of the nitrification process with activated sludge: inhibiting effect of ammonia on nitrifying bacteria. Rev. Sci. Eau . 10 , 359 - 375 .  

  20. Wang , W. , Ohse , K. , Liu , J. , Mo , W . and Oilcawa , T . 2005 . Contribution of root respiration to soil respiration in a C3/C4 mixed grassland . J. Biosci . 30 , 507 - 514 .  

  21. Zhou , G. , Liu , S. , Li , Z. , Zhang , D. , Tang , X . and co-authors . 2006 . Old-growth forests can accumulate carbon in soils . Science 314 , 1417.  

comments powered by Disqus