Start Submission Become a Reviewer

Reading: An idealized model of the one-dimensional carbon dioxide rectifier effect

Download

A- A+
Alt. Display

Original Research Papers

An idealized model of the one-dimensional carbon dioxide rectifier effect

Authors:

Vincent E. Larson ,

Department of Mathematical Sciences, University of Wisconsin – Milwaukee, Milwaukee, WI, US
X close

Hans Volkmer

Department of Mathematical Sciences, University of Wisconsin – Milwaukee, Milwaukee, WI, US
X close

Abstract

The net flux of carbon dioxide (CO2) from the land surface into the atmospheric boundary layer has a diurnal cycle. Drawdown of CO2 occurs during daytime photosynthesis, and return of CO2 to the atmosphere occurs during night. Even when the net diurnal-average surface flux vanishes, the diurnal-average profile of atmospheric CO2 mixing ratio is usually not vertically uniform. This is because of the diurnal rectifier effect, by which atmospheric vertical transport and the surface flux conspire to produce a surplus of CO2 near the ground and a deficit aloft.

This paper constructs an idealized, 1-D, eddy-diffusivity model of the rectifier effect and provides an analytic series solution. When non-dimensionalized, the intensity of the rectifier effect is related solely to a single ‘rectifier parameter’. Given this model’s governing equation and boundary conditions, we prove that the existence of the rectifier effect is related to the correlation of CO2 gradient and transport, and also to the day–night symmetry of transport.

The rectifier-induced near-surface CO2 surplus ought to be included in inverse calculations that use near-surface CO2 mixing ratio to infer land–surface sources and sinks of carbon. Such inverse modeling is facilitated by our model’s simplicity. To illustrate, we use a 1-D inverse calculation to infer the amplitude of diurnal CO2 surface flux.

How to Cite: Larson, V.E. and Volkmer, H., 2008. An idealized model of the one-dimensional carbon dioxide rectifier effect. Tellus B: Chemical and Physical Meteorology, 60(4), pp.525–536. DOI: http://doi.org/10.1111/j.1600-0889.2008.00368.x
  Published on 01 Jan 2008
 Accepted on 3 Jun 2008            Submitted on 22 Oct 2007

References

  1. Abramowitz , M. and Stegun , I. A . 1965 . Handbook of Mathematical Functions . Dover Publications , New York , 1046 pp .  

  2. Arflcen , G . 1985 . Mathematical Methods for Physicists . 3rd Edition, Academic Press, San Diego, CA, USA, 985 pp.  

  3. Baker , I. , Denning , A. S. , Hanan , N. , Prihodko , L. , Uliasz , M . and co-authors. 2003. Simulated and observed fluxes of sensible and latent heat and CO2 at the WLEF-TV tower using SiB2.5. Global Change Biol . 9 , 1262 - 1277 .  

  4. Bakwin , P. S. , Davis , K. J. , Yi , C. , Wofsy , S. C. , Munger , J. W. and co-authors . 2004 . Regional carbon dioxide fluxes from mixing ratio data. Tellus 56B , 301 - 311 .  

  5. Boas , M. L . 1983 . Mathematical Methods in the Physical Sciences . 2nd Edition , John Wiley and Sons , New York , 793 pp .  

  6. Braswell , B. H. , Sacks , W. J. , Linder , E. and Schimel , D. S . 2005 . Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. Global Change Biol ., 11 , 335 – 355 .  

  7. Chen , B. , Chen , J. M. , Liu , J. , Chan , D. , Higuchi , K. and co-authors . 2004 . A vertical diffusion scheme to estimate the atmospheric rectifier effect. J. Geophys. Res . 109 D04306. doi: https://doi.org/10.1029/2003JD003925 .  

  8. Davis , K. J. , Bakwin , P. S. , Yi , C. , Berger , B. W. , Zhao , C. and co-authors . 2003 . The annual cycles of CO2 and H20 exchange over a northern mixed forest as observed from a very tall tower. Global Change Biol . 9 , 1278 - 1293 .  

  9. Denning , A. S. , Fung , I. Y. and Randall , D. A . 1995 . Latitudinal gradient of atmospheric CO2 due to seasonal exchange with land biota. Nature 376 , 240 – 243 .  

  10. Denning , A. S. , Collatz , G. J. , Zhang , C. , Randall , D. A. , Berry , J. A. and co-authors . 1996 a. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 1: surface carbon fluxes. Tellus 48B , 521 - 542 .  

  11. Denning , A. S. , Randall , D. A. , Collatz , G. J. and Sellers , P. J. 1996b. Simulations of terrestrial carbon metabolism and atmospheric CO2 in a general circulation model. Part 2: simulated CO2 concentrations. Tellus 48B , 521 - 542 .  

  12. Denning , A. S. , Takahashi , T. and Friedlingstein , P . 1999 . Can a strong atmospheric CO2 rectifier effect be reconciled with a “reasonable” carbon budget? Tellus 51B , 249 – 253 .  

  13. Gradshteyn , I. S. and Ryzhilc , I. M . 1980 . Table of Integrals, Series, and Products . Academic Press, San Diego, CA, USA, 1160 pp.  

  14. Gruber , N. , Gloor , M. , Fan , S.-M. and Sarmiento , J. L . 2001 . Air-sea flux of oxygen estimated from bulk data: implications for the marine and atmospheric oxygen cycles. Global Biogeochem. Cycles 15, 783 – 803 .  

  15. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. and co-authors . 2002 . Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415 , 626 - 630 .  

  16. Gurney , K. R. , Law , R. M. , Denning , A. S. , Rayner , P. J. , Baker , D. and co-authors . 2003 . TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information. Tellus 55B , 555 - 579 .  

  17. Heimann , M. , Keeling , C. D. and Fung , I. Y . 1986 . Simulating the atmo-spheric carbon dioxide distribution with a three-dimensional tracer model. In: The Changing Carbon Cycle: A Global Analysis (eds J. R. Traballca and D. E. Reichle), Springer-Verlag, New York, 16 - 49 .  

  18. Keeling , C. D. , Piper , S. C. and Heimann , M . 1989 . A three-dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. In: Aspects of Cli-mate Variability in the Pacific and the Western Americas (ed. D. H. Peterson), Geophys. Monogr. 55, Am. Geophys. Union, 305 - 363 .  

  19. Law , R. M. , Rayner , P. J. and Wang , Y. P . 2004 . Inversion of diurnally varying synthetic CO2: network optimization for an Australian test case. Global Biogeochem. Cycles 18 , GB1044, doi: https://doi.org/10.1029/2003GB002136 .  

  20. Peylin , P. , Rayner , P. J. , Bousquet , R , Carouge , C. , Hourdin , F. and co-authors . 2005 . Daily CO2 flux estimates over Europe from continuous atmospheric measurements: 1, inverse methodology. Atmos. Chem. Phys. Discuss . 5 , 1647– 1678 .  

  21. Stephens , B. B. , Keeling , R. F. , Heimann , M. , Six , K. D. , Murnane , R. and co-authors. 1998. Testing global ocean carbon cycle models using measurements of atmospheric 02 and CO2 concentration. Global Biogeochem. Cycles 12 , 213 - 230 .  

  22. Stephens , B. B. , Wofsy , S. C. , Keeling , R. F. , Tans , P. P . and Potosnak , M. J . 2000. The CO2 budget and rectification airborne study: strategies for measuring rectifiers and regional fluxes. In: Inverse Methods in Global Biogeochemical Cycles (eds P. Kasibhatla. co-editors), volume 114 of Geophys. Monogr. Ser American Geophysical Union, Washington, DC, 311 - 324 .  

  23. Stephens , B. B. , Gurney , K. R. , Tans , P. P. , Sweeney , C. , Peters , W . and co-authors. 2007. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316 , 1732– 1735 .  

  24. Stull , R. B. 1988. An Introduction to Boundary Layer Meteorology . Kluwer Academic Publishers, Dordrecht, Netherlands. 666 pp.  

  25. Yi , C. , Davis , K. J. , Bakwin , P. S. , Berger , B. W. and Man , L. C. 2000. Influence of advection on measurements of the net ecosystem-atmosphere exchange of CO2 from a very tall tower. J. Geophys. Res . 105 , 9991 - 9999 .  

  26. Yi , C. , Davis , K. J. , Berger , B. W. and Bakwin , P. S . 2001. Long-term observations of the dynamics of the continental planetary boundary layer. J. Atmos. Sci . 58 , 1288 - 1299 .  

  27. Yi , C. , Davis , K. J. , Bakwin , P. S. , Denning , A. S. , Zhang , N . and co-authors. 2004. Oberved covariance between ecosystem carbon exchange and atmospheric boundary layer dynamics at a site in northern Wisconsin. J. Geophys. Res . 109. D08302.doi: https://doi.org/10.1029/2003JDO04164 .  

comments powered by Disqus