Start Submission Become a Reviewer

Reading: Chemical properties of Arctic aerosol particles collected at the Zeppelin station during the...

Download

A- A+
Alt. Display

Original Research Papers

Chemical properties of Arctic aerosol particles collected at the Zeppelin station during the aerosol transition period in May and June of 2004

Authors:

Ulrika Behrenfeldt,

Department of Applied Environmental Science, Stockholm University, S-106 91 Stockholm, SE
X close

Radovan Krejci,

Department of Meteorology, Stockholm University, S-106 91, Stockholm, SE
X close

Johan Ström ,

Department of Applied Environmental Science, Stockholm University, S-106 91 Stockholm, SE
X close

Andreas Stohl

Norwegian Institute for Air Research, NILU, NO
X close

Abstract

Single particle analysiswas performed on samples taken at the Zeppelin Station, Svalbard, during the ASTAR campaign, 2004. Thirteen samples were selected to representatively cover the campaign period and different weather conditions. This particular period also covers the transition from an accumulation mode dominated size distribution in spring to an Aitken mode dominated aerosol size distribution in summer. Altogether, 1353 particles were analysed and their elemental composition documented. Another 1225 were counted but not characterized chemically. The samples were compared with respect to chemical composition, aerosol size, shape and airmass origin. The comparison showed that the samples taken before the aerosol size transition were dominated by spherical ‘organic like’ particles in the submicrometre range, with an Eurasian influence. The samples taken after the size transition showed a more complex character and the source origin was the Arctic basin. In this period, an increase of both marine aerosol groups as well as groups of continental origin became more pronounced. This apparent contradiction may have its explanation in cloud scavenging processes, removing the hygroscopic particles from the old continental air, leaving the more hydrophobic particles, at the same time, as the ocean source will provide a more maritime character.

How to Cite: Behrenfeldt, U., Krejci, R., Ström, J. and Stohl, A., 2008. Chemical properties of Arctic aerosol particles collected at the Zeppelin station during the aerosol transition period in May and June of 2004. Tellus B: Chemical and Physical Meteorology, 60(3), pp.405–415. DOI: http://doi.org/10.1111/j.1600-0889.2008.00349.x
1
Views
  Published on 01 Jan 2008
 Accepted on 26 Feb 2008            Submitted on 11 Oct 2007

References

  1. ACIA 2005 . Arctic Climate Impact Assessment 2005 . Cambridge Uni-versity Press, Cambridge, UK, 1042p.  

  2. Adams , J. W. and Cox , R. A . 2002 . Halogen chemistry of the marine boundary layer./. Phys. IV France 12 , 105 – 124 .  

  3. Baraskan , M. and Shaw , G. E . 2001 . Residence time of Arctic haze aerosols using the concentrations and activity ratios of 210P0, 210pb and 7Be. Aerosol. Sci . 32, 443 – 452 .  

  4. Beine , H. J . 1999 . Measurements of CO in the high Arctic. Global Change Sci . 1, 145 – 151  

  5. Charlson , R. J. , Schwartz , J. M. , Hales , J. M. , Cess , J. A. , Coakley , J. A. J. , and co-authors . 1992 . Climate forcing by anthropogenic aerosols. Science 255 , 423 - 430 .  

  6. Ebert , M. , Weinbruch , S. , Hoffman , P . and Ortner , H . 2000. Chemical characterization of North Sea aerosol particles. J. Aerosol. Sci . 31 , 613 - 632 .  

  7. Eneroth , K. , Kjellstrom , E. and Holmen , K . 2003 . A trajektory clima-tology for Svalbard; investigating how atmospheric flow patterns in-fluence observed tracer concentrations. Phys. Chem. Earth 28 , 1191 – 1203 .  

  8. Engvall , A.-C. , Krejci , K. , Strom , J. , Treffeisen , R. , Scheele , R. and co-authors . 2007 . Changes in aerosol properties during spring-summer period in the Arctic troposphere. Atmos. Chem. Phys. Discuss . 7 , 1215-126 0 .  

  9. Heintzenberg , J. and Larssen , S . 1983 . SO2 and SO4 in the Arctic: inter-pretation of observations at three Norwegian arctic-subarctic stations. Tellus 35B , 255 – 265 .  

  10. Koch , D. and Hansen , J . 2005 . Distant origins of Arctic black carbon: a Goddard Institute for Space Studies ModelE experiment. J. Geophys. Res . 110 , D04204 , doi: https://doi.org/10.1029/2004J1)005296 .  

  11. Krejci , R. , Strom , J. , de Reus , M. and Sahle , W . 2005 . Single particle analysis of the accumulation mode aerosol over the northeast Ama-zonian tropical rain forest, Surinam, South America. Atmos. Chem. Phys . 5 , 3331 – 3344 .  

  12. Leck , C. and Bigg , K . 2005 . Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer. Tellus 57B , 305 – 316 .  

  13. Liljequist , G. H . 1970 . Klimatologi . Generalstabens Litografiska Anstalt , Stockholm .  

  14. Mamane , Y. and Noll , K. E . 1985 . Characterization of large particles at a rural site in the eastern United States: mass distribution and individual particle analysis. Atmos. Environ . 19 , 611 – 622 .  

  15. Mitchell , J. M . 1957 . Visual range in the polar regions with particular reference to the Alaskan Arctic. .1. Atmos. Terr. Phys. Spec. Suppl . 195-211.  

  16. Nilsson , E. D. , Rannik , O. , Swietlicki , E ., Leck , C. , Aalto , P. P. and co-authors. 2001. Turbulent aerosol fluxes over the Arctic Ocean. Part 2: wind driven sources from the sea. J. Geophys. Res. (D Atmos) 106 , 32 139 - 32 154 .  

  17. Olivier , J. G. J. and Berdowski , J. J. M . 2001 . Global emissions sources and sinks. In: The Climate System , pp. 33-78. (eds.J. Berdowski , R. . Guicherit and B. J. Heij) A.A. Balkema Publishers/Swets & Zeitlinger Publishers, Lisse, The Netherlands. ISBN 90-5809-255-0.  

  18. Quinn , P. , Miller , T. , Bates , T. , Ogren , J. A. , Andrews , E. and co-authors . 2002 . A 3-year record simultaneously measured aerosol chemical and optical properties at Barrow, Alaska./. Geophys. Res . 107(D11), 4130, doi: https://doi.org/10.1029/2001JD001248 .  

  19. Rosenfeld , D . 2000 . Suppression of rain and snow by urban and industrial air pollution. Science 287 , 1793 – 1796 .  

  20. Sirois , A. and Barrie , L. A . 1999 . Arctic lower tropospheric aerosol trends and composition at Alert, Canada. J. Geophys. Res . 104 , 11 599 – 11618 .  

  21. Stohl , A . 2006 . Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res . 111 , D11306 , doi: https://doi.org/10.1029/2005JD006888 .  

  22. Stohl , A. , Hittenberger , M. and Wotawa , G . 1998 . Validation of the La-grangian particle dispersion model FLEXPART against large scale tracer experiment data. Atmos. Environ . 32 , 4245 – 4264 .  

  23. Stohl , A. , Forster , C. , Frank , A. , Seibert , P. and Wotawa , G . 2005 . Techni-cal note: the Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys . 5 , 2461 – 2474 .  

  24. Strom , J. , Umegard , J. , Torseth , K. , Tunved , P. , Hansson , H.-C. and co-authors . 2003 . One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Sval-bard, March 2000-March 2001. Phys. Chem. Earth 28 , 1181 - 1190 .  

  25. Targino , A. C. , Krejci , R. , Noone , K. J. and Glantz , P . 2006 . Single particle analysis of ice crystal residuals observed in orographic wave clouds over Scandinavia during INTACC experiment. Atmos. Chem. Phys . 6 , 1977 – 1990 .  

  26. Xhoffer , C. , Bernard , P. and van Grieken , R . 1991 . Chemical character-ization and source apportionment of individual aerosol particles over the North Sea and English Channel using multivariate techniques. Environ. Sci. Technol . 25 , 1470 – 1478 .  

comments powered by Disqus