Start Submission Become a Reviewer

Reading: In-situ airborne observations of the microphysical properties of the Arctic tropospheric aer...

Download

A- A+
Alt. Display

Original Research Papers

In-situ airborne observations of the microphysical properties of the Arctic tropospheric aerosol during late spring and summer

Authors:

Ann-Christine Engvall ,

Department of Meteorology, Stockholm University, Stockholm, 106 91, Stockholm, SE
X close

Radovan Krejci,

Department of Meteorology, Stockholm University, Stockholm, 106 91, Stockholm, SE
X close

Johan Ström,

Department of Applied Environmental Science – Atmospheric Science Unit, University of Stockholm, Stockholm, 106 91, Stockholm, SE
X close

Andreas Minikin,

Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Weßling, DE
X close

Renate Treffeisen,

Alfred-Wegener-Institut für Polar- und Meeresforschung, Telegrafenberg A43, 14473 Potsdam, DE
X close

Andreas Stohl,

Norwegian Institute for Air Research, Instituttveien 18, 2027 Kjeller, NO
X close

Andreas Herber

Alfred-Wegener-Institut für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, DE
X close

Abstract

In-situ aerosol data collected in the Arctic troposphere during a three-week period in 2004 were analysed. The measurements took place during late spring, i.e., at the time of the year when the characteristics of the aerosol distribution change from being accumulation-mode dominated to being primarily of the Aitken-mode type, a process that previously has been observed in the boundary layer. To address the question whether this transition is also detectable in the free troposphere of an aircraft-measured data from the ASTAR 2004 campaign were analysed. In this study, we present vertically as well as temporally results from both ground-based and airborne measurements of the total number concentrations of particles larger than 10 and 260 nm. Aircraft-measured size distributions of the aerosol ranging from 20 to 2200 nm have been evaluated with regard to conditions in the boundary layer as well as in the free troposphere. Furthermore an analysis of the volatile fraction of the aerosol population has been performed both for the integrated and size-distributed results. From these investigations we find that the transition takes place in the entire troposphere.

How to Cite: Engvall, A.-C., Krejci, R., Ström, J., Minikin, A., Treffeisen, R., Stohl, A. and Herber, A., 2008. In-situ airborne observations of the microphysical properties of the Arctic tropospheric aerosol during late spring and summer. Tellus B: Chemical and Physical Meteorology, 60(3), pp.392–404. DOI: http://doi.org/10.1111/j.1600-0889.2008.00348.x
1
Views
  Published on 01 Jan 2008
 Accepted on 22 Feb 2008            Submitted on 1 Oct 2007

References

  1. Baumgardner , D. , Dye , J. E. , Gandrud , B. W. and Knollenberg , R. G . 1992 . Interpretation of measurements made by the forward scatter-ing spectrometer probe (Fssp-300) during the airborne Arctic strato-spheric expedition. J. Geophys. Res.-Atmos . 97 , 8035 – 8046 .  

  2. Bodhaine , B. A . 1989 . Barrow surface aerosol - 1976-1986. Atmos. Environ . 23 , 2357 – 2369 .  

  3. Bodhaine , B. A. , Harris , J. M. and Herbert , G . A. 1981. Aerosol light-scattering and condensation nuclei measurements at Barrow, Alaska. Atmos. Environ . 15 , 1375 - 1389 .  

  4. Engvall , A.-C. , Krejci , R. , Strom , J. , Treffeisen , R. , Scheele , R . and co-authors 2008. Changes in aerosol properties during spring-summer period in the Arctic troposhere. Atmos. Chem. Phys ., 8 , 1 - 18 .  

  5. Garbrecht , T. , Herber , A. , Steinhage , D. and Zielinski, 0., 2006. Sensor network for polar research aircraft. Environ. Res. Arctic , 127 - 133 .  

  6. Garrett , T J. , Hobbs , P. V and Radke , L. E 2002. High Aitken Nucleus Concentrations above Cloud Tops in the Arctic. J. Atmos. Sci ., 59 , 779 - 783 .  

  7. Herber , A. , Thomason , L. W. , Gernandt , H. , Leiterer , U. , Nagel , D . and co-authors 2002. Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. J. Geophys. Res.-Atmos . 107 , doi: https://doi.org/10.29/2001JDO00536 .  

  8. Jaeschke , W. , Beltz , N. , Dierssen , J. P. , Haunold , W. , Krischke , U . and co-authors 1997. Measurements on the distribution of trace substances in the Arctic troposphere. Atmos. Res . 44 , 199 - 221 .  

  9. Jokinen , V. and Makela , J. M. 1997. Closed-loop arrangement with crit-ical orifice for DMA sheath excess flow system. J. Aerosol. Sci . 28 , 643 - 648 .  

  10. Knutson , E O. . . and Whitby , K . T. 1975. Aerosol classification by electric mobility: apparatus, theory and applications. J. Aerosol Sci . 6 , 443 - 451 .  

  11. Olivier , J. G. J. and Berdowski , J. J. M. 2001. Global emissions sources and sinks, in The Climate system (edsJ. Berdowski , R . Guicherit , and B. J. Heij), A. A. Balkema, Brookfield, Vt, 33 - 78 .  

  12. Quinn , P. K. , Miller , T . L., Bates , T. S. , Ogren , J. A. , Andrews , E . and co-authors 2002. A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. J. Geophys. Res.-Atmos . 107 , doi: https://doi.org/10.1029/2001JDO01248 .  

  13. Quinn , P. K. , Shaw , G. , Andrews , E. , Dutton , E. G. , Ruoho-Airola , T. and co-authors . 2007 . Arctic haze: current trends and knowledge gaps. Tellus B 59 , 99 - 114 .  

  14. Rinke , A. , Dethloff , K. , Spekat , A. , Enke , W. and Christensen, J. H. 1999. High resolution climate simulations over the Arctic. Polar Res . 18 , 143 - 150 .  

  15. Scheuer , E. , Talbot , R. W. , Dibb , J. E. , Seid , G DeBell , L . and co-authors 2003. Seasonal distributions of fine aerosol sulfate in the North American Arctic basin during TOPSE./. Geophys. Res.-Atmos . 108 , doi: https://doi.org/10.1029/2001JDO01364 .  

  16. Schröder , E and Strom , J. 1997. Aircraft measurements of sub microm-eter aerosol particles (>7 nm) in the midlatitude free troposphere and tropopause region. Atmos. Res . 44 , 333 - 356 .  

  17. Shiobara , M. , Yabuki , M. and Kobayashi , H . 2003 . A polar cloud analysis based on micro-pulse Lidar measurements at Ny-Alesund, Svalbard and Syowa, Antarctica. Phys. Chem. Earth . 28 , 1205 – 1212 .  

  18. Sirois , A. and Barrie , L. A . 1999 . Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980-1995. J. Geophys. Res.-Atmos . 104 , 11599 – 11618 .  

  19. Stein C. , Shroder E , and Petzold A . 2001 . The condensation Particle size Analyzer: a new instrument for the measurement of ultrafine aerosol size distributions, Abstracts of the European Aerosol Conferenc 2001. J. Aerosol Sci ., 32 , 381 – 382 .  

  20. Stohl , A. and Thomson , D . J. 1999. A density correction for Lagrangian particle dispersion models. Bound-Lay Meteorol . 90 , 155 - 167 .  

  21. Stohl , A. , Forster , C. , Frank , A. , Seibert , P. and Wotawa , G . 2005 . Techni-cal note: the Lagrangian particle dispersion model FLEXPART version 6.2. Atmos. Chem. Phys . 5 , 2461 – 2474 .  

  22. Strom , J., Umegard, J., Torseth, K., Tunved, P., Hansson,H. C. and co-authors 2003. One year of particle size distribution and aerosol chemical composition measurements at the Zeppelin Station, Sval-bard, March 2000-March 2001. Phys. Chem. Earth . 28 , 1181 - 1190 .  

  23. Tjemstrom , M. , Leck , C. , Persson , P. O. G. , Jensen , M. L. , Oncley , S. P. and co-authors 2004. The summertime Arctic atmosphere-meteorological measurements during the Arctic Ocean experiment 2001. B Am. Meteorol. Soc . 85 , 1305 - 1321 .  

  24. Treffeisen , R. , Rinke , A. , Fortmann , M. , Dethloff , K. , Herber , A . and co-authors 2005. A case study of the radiative effects of Arctic aerosols in March 2000. Atmos. Environ . 39 , 899 - 911 .  

  25. Treffeisen , R. E. , Thomason , L. W. , Strom , J. , Herber , A . , Burton , S. P. and co-authors 2006. Stratospheric aerosol and gas ex-periment (SAGE) H and BI aerosol extinction measurements in the Arctic middle and upper troposphere. J. Geophys. Res.-Atmos . 111 , doi: https://doi.org/10.1029/2005JD006271 .  

  26. Weber , R J. , Orsini , D. , Wang , B. , Scheuer , E. , Talbot , R. W. and co-authors 2003. Investigations into free tropospheric new par-ticle formation in the central Canadian arctic during the win-ter/spring transition as part of TOPSE./. Geophys. Res.-Atmos . 108 , doi: https://doi.org/10.1029/2002JD002239 .  

  27. Wiedensohler , A . 1988 . An approximation of the bipolar charge-distribution for particles in the sub-micron size range. J. Aerosol. Sci . 19 , 387 – 389 .  

  28. Williams , J. , de Reus , M. , Krejci , R. , Fischer , H . and Strom , J. 2002. Application of the variability-size relationship to atmospheric aerosol studies: estimating aerosol lifetimes and ages. Atmos. Chem. Phys . 2 , 133 - 145 .  

  29. Wylie , D. P. and Hudson , J. G. 2002. Effects of long-range transport and clouds on cloud condensation nuclei in the springtime Arctic. J. Geophys. Res.-Atmos . 107 , doi: https://doi.org/10.1029/2001JDO00759 .  

  30. Yum , S. S. and Hudson , J. G. 2001. Vertical distributions of cloud con-densation nuclei spectra over the springtime Arctic Ocean. J. Geophys. Res.-Atmos . 106 , 15045 - 15052 .  

comments powered by Disqus