Start Submission Become a Reviewer

Reading: Upward fluxes of particles over forests: when, where, why?

Download

A- A+
Alt. Display

Original Research Papers

Upward fluxes of particles over forests: when, where, why?

Authors:

S. C. Pryor ,

Atmospheric Science Program, Department of Geography, Indiana University, US; Department of Wind Energy and Atmospherics Physics, Risø National Laboratory, DK
X close

R. J. Barthelmie,

Atmospheric Science Program, Department of Geography, Indiana University, US; Department of Wind Energy and Atmospherics Physics, Risø National Laboratory, DK; Institute for Energy Systems, School of Engineering, University of Edinburgh, GB
X close

L. L. Sørensen,

Department of Wind Energy and Atmospherics Physics, Risø National Laboratory, DK
X close

S. E. Larsen,

Department of Wind Energy and Atmospherics Physics, Risø National Laboratory, DK
X close

A. M. Sempreviva,

Institute of Atmospheric Sciences and Climate, IT
X close

T. Grönholm,

Department of Physical Sciences, University of Helsinki, FI
X close

Ü. Rannik,

Department of Physical Sciences, University of Helsinki, FI
X close

M. Kulmala,

Department of Physical Sciences, University of Helsinki, FI
X close

T. Vesala

Department of Physical Sciences, University of Helsinki, FI
X close

Abstract

Of the 60% of particle number fluxes over two forests that exceed the associated uncertainty bounds, approximately one-third are upward. These ‘apparent emission’ fluxes are not solely observed during periods when other micrometeorological fluxes are ill-defined, which implies they derive from a/multiple physical cause/s. Upward fluxes are slightly more frequent at night over the Danish beech forest but do not depend on wind direction or speed. Data from the pine forest in Finland indicate no diurnal cycle in the frequency with which upward fluxes are observed, although as in data from the beech forest the magnitude of upward fluxes is higher during the day. At the pine forest local emissions may account for some of the upward fluxes but other mechanisms appear also to play a role. Entrainment of particle depleted air from above the boundary layer, analysed via use of quadrant analysis and scalar correlations, appears to be important in the occurrence of upward fluxes at both sites. The rate of upward fluxes scales with prevailing geometric mean diameter (GMD) and consistent with the hypothesis of entrainment of relatively particle-depleted air upward fluxes appear to be associated with particle ensembles characterized by larger prevailing GMD.

How to Cite: Pryor, S.C., Barthelmie, R.J., Sørensen, L.L., Larsen, S.E., Sempreviva, A.M., Grönholm, T., Rannik, Ü., Kulmala, M. and Vesala, T., 2008. Upward fluxes of particles over forests: when, where, why?. Tellus B: Chemical and Physical Meteorology, 60(3), pp.372–380. DOI: http://doi.org/10.1111/j.1600-0889.2008.00341.x
1
Views
1
Downloads
  Published on 01 Jan 2008
 Accepted on 11 Feb 2008            Submitted on 30 Sep 2007

References

  1. Buzorius , G. , Rannik , U. , Makeld , J. M. , Keronen , P. , Vesala , T. and co-authors . 2000 . Vertical aerosol fluxes measured by the eddy co-variance method and deposition of nucleation mode particles above a scots pine forest in southern Finland. J. Geophys. Res . 105 , 19905 - 19916 .  

  2. Buzorius , G. , Rannik , U. , Makeld , J. M. , Vesala , T. and Kulmala , M . 1998 . Vertical aerosol particle fluxes measured by eddy covariance technique using condensational particle counter. J. Aerosol. Sci . 29 , 157 – 171 .  

  3. Buzorius , G. , Rannik , U. , Nilsson , D. and Kulmala , M . 2001 . Vertical fluxes and micrometeorology during aerosol particle formation events. Tellus 53B , 394 – 495 .  

  4. Dal Maso , M. , Kulmala , M. , Riipinen , I. , Wagner , R. , Hussein , T . and co-authors. 2005. Formation and growth of fresh atmospheric aerosols, eight years of aerosol size distribution data from SMEAR II, Hyytiala, Finland. Boreal Environ. Res . 10 , 323 - 336 .  

  5. Duan , B. , Fairall , C. W. and Thomson , D W. 1988. Eddy correlation measurements of the dry deposition of particles in wintertime. J. Appl. Meteorol . 27 , 642 - 652 .  

  6. Gallagher , M. , Beswick , K. , Duyzer , J. , Westrate , H. , Choularton , T . and co-authors. 1997. Measurements of aerosol fluxes to Speulder forest using a micrometeorological technique. Atmos. Environ . 31 , 359 - 373 .  

  7. Gaman , A. , Rannik , O. , Aalto , P. , Pohja , T. , Siivola , E . and co-authors. 2004. Relaxed eddy accumulation system for size resolved aerosol particle flux measurements./. Atmos. Oceanic Technol . 21 , 933 - 943 .  

  8. Gao , W. , Shaw , R. H. and Paw , K. T . 1989 . Observation of organized structure in turbulent flow within and above a forest canopy. Boundary-Layer Meteorol . 47 , 349 – 377 .  

  9. Guha , A . 1997 . A unified eulerian theory of turbulent deposition to smooth and rough surfaces. J. Aerosol. Sci . 28 , 1517 – 1537 .  

  10. Hari , P. and Kulmala , M . 2005. Station for measuring ecosystem-atmosphere relations (SMEAR II). Boreal Environ. Res . 10 , 315 - 322 .  

  11. Hicks , B. B . 1981 . An examination of turbulence statistics in the surface boundary layer. Boundary-Layer Meteorol . 21 , 389 – 402 .  

  12. Horst , T . 1997 . A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Boundary-Layer Meteorol . 82 , 219 – 233 .  

  13. Katen , P. C. and Hubbe , J. M. 1985. An evaluation of optical particle counter measurements of the dry deposition of atmospheric aerosol particles. J. Geophys. Res . 90 , 2145 - 2160 .  

  14. Klaassen , W. and Sogachev , A . 2006 . Flux footprint simulation down-wind of a forest edge. Boundary-Layer Meteorol. 121 , 459 - 473 .  

  15. Kowalski , A . 2001 . Deliquescence induces eddy covariance and es-timable dry deposition errors. Atmos. Environ . 35, 4843 – 4851 .  

  16. Kulmala , M. , Hämeri , K. , Aalto , P. , Mäkelä , J , Pirjola , L. and co-authors . 2001 . Overview of the international project on biogenic aerosol for-mation in the boreal forest (BIOFOR). Tellus 53B , 324 - 343 .  

  17. Lamaud , E. and Irvine , M . 2006 . Temperature-humidity dissimilarity and heat-to-water-vapour transport efficiency above and within a pine forest canopy, The role of the Bowen ratio. Boundary-Layer Meteorol . 120 , 87 – 109 .  

  18. Lenschow , D. H. and Kristensen , L . 1985 . Uncorrelated noise in turbu-lence measurements. J. Atmos. Oceanic Technol . 2 , 68 – 81 .  

  19. Nakai , T. , Van Der Molen , M. K. , Gash , J. H. C. and Kodama , Y . 2006. Correction of sonic anemometer angle of attack errors. Agric. Forest Meteorol . 136 , 19 - 30 .  

  20. Neumann , H. H. and den Hartog , G. 1985. Eddy correlation measure-ments of atmospheric fluxes of ozone, sulphur , and particulates during the Champaign intercomparison study. ./. Geophys. Res . 90 , 2097-211 0 .  

  21. Nilsson , E. D ., Rannik , U. , Kulmala , M. , Buzorius , G . and O'Dowd , C. D. 2001. Effects of continental boundary layer evolution, convection, turbulence and entrainment, on aerosol formation. Tellus 53B , 441 - 461 .  

  22. Pryor , S. C. and Binkowski , E S . 2004 . An analysis of the time scales associated with aerosol processes during dry deposition. Aerosol Sci. Technol . 38 , 1091 – 1098 .  

  23. Pryor , S. C. , Gallagher , M. , Sievering , H. , Larsen , S. , Barthelmie , R . J. and co-authors. 2008a. A review of measurement and modelling tools for quantifying particle atmosphere-surface exchange. Tellus 60B , 42 - 75 .  

  24. Pryor , S. C. , Larsen , S. E. , Sorensen , L. L. and Barthelmie , R . J. 2008b. Particle fluxes above forests, Observations, method-ological considerations and method comparisons. Environ. Poll ., https://doi.org/10.1016/j.envpol.2007.06.068 .  

  25. Pryor , S. C. , Larsen , S. E. , Sorensen , L. L. , Barthelmie , R. J. , Grönholm , T. and co-authors. 2007. Particle fluxes over forests, analyses of flux methods and functional dependencies. J. Geophys. Res., Atmospheres 112 , D07205, https://doi.org/10.07210.01029/02006JD008066 .  

  26. Sempreviva , A. M. and Gryning , S.-E . 2000 . Mixing height over water and its role on the correlation between temperature and humidity fluc-tuations in the unstable surface layer. Boundary-Layer Meteorol . 97 , 273 – 291 .  

  27. Shaw , R. H. , Tavangar , J. and Ward , D P. 1983. Structure of the Reynolds stress in a canopy layer. J. Clim. Appl. Meteorol . 22 , 1922– 1931 .  

  28. Sogacheva , L. , Dal Maso , M. , Kerminen , V.-M. and Kulmala , M . 2005. Probability of nucleation events and aerosol particle concentration in different air mass types arriving at Hyytiala, southern Finland, based on back trajectory analysis. Boreal Environ. Res . 10 , 479-491.  

  29. Van Der Molen , M. K. , Gash , J. H. C. and Elbers , J. A. 2004. Sonic anemometer (co)sine response and flux measurement. II. The effect of introducing an angle of attack dependent calibration. Agric. Forest Meteorol . 122 , 95 - 109 .  

  30. Webb , E. , Pearman , G. and L,euning, R . 1980 . Correction of flux mea-surements for density effects due to heat and water vapour transfer. Quart. J. Royal Meteorol. Soc . 106 , 85 – 100 .  

  31. Wyngaard , J. C. 1973. On surface-layer turbulence. In: Workshop on Micrometeorology (ed.D. A. Haugen). American Meteorological So-ciety, Boston, Mass, 101 - 149 .  

  32. Zwiers , E W. and von Storch , H . 1995 . Taking serial-correlation into account in tests of the mean. J. Climate 8 , 336 – 351 .  

comments powered by Disqus