Start Submission Become a Reviewer

Reading: Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost car...

Download

A- A+
Alt. Display

Original Research Papers

Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming

Authors:

D. V. Khvorostyanov ,

Laboratoire des Sciences du Climat et l’Environnement, Saclay, FR; A. M. Obukhov Institute of Atmospheric Physics RAS, Moscow, RU
X close

P. Ciais,

Laboratoire des Sciences du Climat et l’Environnement, Saclay, FR
X close

G. Krinner,

Laboratoire de Glaciologie et Géophysique de l’Environnement, St Martin d’Hères, FR
X close

S. A. Zimov,

Northeast Science Station, Cherskii, RU
X close

Ch. Corradi,

UNITUS, University of Tuscia, Veterbo, IT
X close

G. Guggenberger

Institute of Soil Science and Plant Nutrition, Martin-Luther-Universität, Halle-Wittenberg, DE
X close

Abstract

In the companion paper (Part I), we presented a model of permafrost carbon cycle to study the sensitivity of frozen carbon stocks to future climate warming. The mobilization of deep carbon stock of the frozen Pleistocene soil in the case of rapid stepwise increase of atmospheric temperature was considered. In this work, we adapted the model to be used also for floodplain tundra sites and to account for the processes in the soil active layer. The new processes taken into account are litter input and decomposition, plant-mediated transport of methane, and leaching of exudates from plant roots. The SRES-A2 transient climate warming scenario of the IPSL CM4 climate model is used to study the carbon fluxes from the carbon-rich Pleistocene soil with seasonal active-layer carbon cycling on top of it. For a point to the southwest from the western branch of Yedoma Ice Complex, where the climate warming is strong enough to trigger self-sustainable decomposition processes, about 256 kgC m-2, or 70% of the initial soil carbon stock under present-day climate conditions, are emitted to the atmosphere in about 120 yr, including 20 kgC m-2 released as methane. The total average flux of CO2 and methane emissions to the atmosphere during this time is of 2.1 kgC m-2 yr-1. Within the Yedoma, whose most part of the territory remains relatively cold, the emissions are much smaller: 0.2 kgC m-2 yr-1 between 2050 and 2100 for Yakutsk area. In a test case with saturated upper-soil meter, when the runoff is insufficient to evacuate the meltwater, 0.05 kgCH4 m-2 yr-1 on average are emitted as methane during 250 yr starting from 2050. The latter can translate to the upper bound of 1 GtC yr-1 in CO2 equivalent from the 1 million km2 area of the Yedoma

How to Cite: Khvorostyanov, D.V., Ciais, P., Krinner, G., Zimov, S.A., Corradi, C. and Guggenberger, G., 2008. Vulnerability of permafrost carbon to global warming. Part II: sensitivity of permafrost carbon stock to global warming. Tellus B: Chemical and Physical Meteorology, 60(2), pp.265–275. DOI: http://doi.org/10.1111/j.1600-0889.2007.00336.x
2
Views
  Published on 01 Jan 2008
 Accepted on 8 Nov 2007            Submitted on 22 Dec 2006

Reference

  1. Canadell , J. , Jackson , R. , Ehleringer , J. , Mooney , H. , Sala , O. and co-authors. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108 , 583 – 595 .  

  2. Chuprynin , V. , Zimov , S. and Molchanova , L . 2001 . Modelling of thermal conditions of soils-and-grounds subject to the biological heat source . Kriosfera Zemli 5 ( 1 ), 80 – 87 .  

  3. Corradi , C. , Kolle , O. , Walther , K. , Zimov , S. A. and Schulze , E.-D . 2005 . Carbon dioxide and methane exchange of a northeast Siberian tussock tundra . Global Change Biol . 11 ( 11 ), 1910 – 1925 .  

  4. Friedlingstein , P. , Joel , G. , Field , C. B. and Fungs , I. Y . 1999 . Toward an allocation scheme for global terrestrial carbon models . Global Change Biol . 5 , 755 – 770 .  

  5. IPCC , 2001 . Climate Change 2001: The Scientific Basis . Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press , Cambridge and New York .  

  6. Jackson , R. , Canadell , J. , Ehleringer , J. , Mooney , H. , Sala , O. and co-authors. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108 , 389 – 411 .  

  7. Khvorostyanov , D. V. , Krinner , G. , Ciais , P. , Heimann , M. and Zimov , S. A . 2008 . Vulnerability of permafrost carbon to global warming. Part 1. Model description and role of heat generated by organic matter decomposition. Tellus , 60B, https://doi.org/10.1111/.1600-0889.2007.00333.x.  

  8. Krinner , G. , Viovy , N. , de Noblet-Ducoudre , N. , Ogee , J. , Polcher , J. and co-authors. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles 19, GB1015. https://doi.org/10.1029/2003GB002199 .  

  9. Loya , W. M. , Johnson , L. C. , Kling , G. W. , King , J. Y. , Reeburgh , W. S. and co-authors. 2002. Pulse-labeling studies of carbon cycling in arctic tundra ecosystems: contribution of photosynthates to soil organic matter. Global Biogeochem. Cycles 16 (14), 1101 .  

  10. Marti , O. , Braconnot , P. , Bellier , J. , Benshila , R. , Bony , S. and co-authors. 2006. The new IPSL climate system model: IPSL-CM4. Note du PUle de Modsation 26, IPSL, F75252 Paris Cedex 5 France .  

  11. Poutou , E. , Krinner , G. , Genthon , C. and de Noblet-Ducoudre , N . 2004 . Impact of soil freezing on future climate change . Clim. Dyn . 23 ( 6 ), 621 – 639 .  

  12. Sazonova , T. S. , Romanovsky , V. E. , Walsh , J. E. and Sergueev , D. O . 2004 . Permafrost dynamics in the 20th and 21st centuries along the East Siberian transect . J. Geophys. Res. (Atmos .) 109 , 1108 .  

  13. Stolbovoi , V. and McCallum , I . 2002 . CD-ROM “Land Resources of Russia” . International Institute for Applied Systems Analysis and the Russian Academy of Science , Laxenburg , Austria .  

  14. Tarnocai , C . 1999 . The effect of climate warming on the carbon balance of cryosols in Canada . Permafrost Pen glacial Process . 10 , 251 – 263 .  

  15. Walter , B. R , Heimann , M. and Matthews , E . 2001 . Modeling modern methane emissions from natural wetlands 1. Model description and results . J. Geophys. Res . 106 , 34189 – 34206 .  

  16. Walter , B. R , Heimann , M. , Shannon , R. D. and White , J. R . 1996 . A process-based model to derive methane emissions from natural wet-lands . Geophys. Res. Lett . 23 , 3731 – 3734 .  

  17. Walter , B. R , Zimov , S. A. , Chanton , J. P. , Verbyla , D. and Chapin , F. S . 2006 . Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming . Nature 443 , 71 – 75 .  

  18. Walter , P. and Heimann , M . 2000 . A process-based, climate-sensitive model to derive methane emissions from natural wetlands: application to five wetland sites, sensitivity to model parameters, and climate . Global Biogeochem. Cycles 14 ( 3 ), 745 – 765 .  

  19. Williams , M. , Eugster , W. , Rastetter , E. B. , Mcfadden , J. P. and Chapin , F. S. Bl. 2000 . The controls on net ecosystem productivity along an Arctic transect: a model comparison with flux measurements . Global Change Biol ., 6(s1) , 116 – 126 .  

  20. Zimov , S. A. , Schuur , E. A. G. and Chapin , F. S.Bl. 2006 . Permafrost and the Global Carbon Budget . Science 312 , 1612 – 1613 .  

  21. Zimov , S. A. , Voropaev , Y. V. , Semiletov , I. R , Davidov , S. P. , Prosiannikov , S . E and co-authors. 1997. North Siberian lakes: a methane source fueled by Pleistocene carbon. Science 277 , 800 – 802 .  

comments powered by Disqus