Start Submission Become a Reviewer

Reading: Vulnerability of permafrost carbon to global warming. Part I: model description and role of ...

Download

A- A+
Alt. Display

Original Research Papers

Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition

Authors:

D. V. Khvorostyanov ,

Laboratoire des Sciences du Climat et l’Environnement, Saclay; Laboratoire de Glaciologie et Géophysique de l’Environnement, St Martin d’Heres, FR; A. M. Obukhov Institute of Atmospheric Physics RAS, Moscow, RU
X close

G. Krinner,

Laboratoire de Glaciologie et Géophysique de l’Environnement, St Martin d’Heres, FR
X close

P. Ciais,

Laboratoire des Sciences du Climat et l’Environnement, Saclay, FR
X close

M. Heimann,

Max-Planck Institute of Biogeochemistry, Jena, DE
X close

S. A. Zimov

Northeast Science Station, Cherskii, RU
X close

Abstract

We constructed a new model to study the sensitivity of permafrost carbon stocks to future climate warming. The one-dimensional model solves an equation for diffusion of heat penetrating from the overlying atmosphere and takes into account additional in situ heat production by active soil microorganisms. Decomposition of frozen soil organic matter and produced CO2 and methane fluxes result from an interplay of soil heat conduction and phase transitions, respiration, methanogenesis and methanotrophy processes. Respiration and methanotrophy consume soil oxygen and thus can only develop in an aerated top-soil column. In contrast, methanogenesis is not limited by oxygen and can be sustained within the deep soil, releasing sufficient heat to further thawin depth the frozen carbon-rich soil organic matter. Heat production that accompanies decomposition and methanotrophy can be an essential process providing positive feedback to atmospheric warming through self-sustaining transformation of initially frozen soil carbon into CO2 and CH4. This supplementary heat becomes crucial, however, only under certain climate conditions. Oxygen limitation to soil respiration slows down the process, so that the mean flux of carbon released during the phase of intense decomposition is more than two times less than without oxygen limitation. Taking into account methanogenesis increases the mean carbon flux by 20%. Part II of this study deals with mobilization of frozen carbon stock in transient climate change scenarios with more elaborated methane module, which makes it possible to consider more general cases with various site configurations. Part I (this manuscript) studies mobilization of 400 GtC carbon stock of the Yedoma in response to a stepwise rapid warming focusing on the role of supplementary heat that is released to the soil during decomposition of organic matter.

How to Cite: Khvorostyanov, D.V., Krinner, G., Ciais, P., Heimann, M. and Zimov, S.A., 2008. Vulnerability of permafrost carbon to global warming. Part I: model description and role of heat generated by organic matter decomposition. Tellus B: Chemical and Physical Meteorology, 60(2), pp.250–264. DOI: http://doi.org/10.1111/j.1600-0889.2007.00333.x
  Published on 01 Jan 2008
 Accepted on 8 Nov 2007            Submitted on 3 Nov 2005

Reference

  1. Andra , O. and Paustian , K . 1987 . Barley straw decomposition in the field: a comparison of models . Ecology 68 , 1190 – 1200 .  

  2. Anisimov , O. A. and Nelson , F. E . 1997 . Permafrost zonation and climate change in the Northern Hemisphere: results from transient general circulation models . Clim. Change 35 , 241 – 258 .  

  3. Botch , M. S. and Kobak , K. I . 1995 . Carbon pools and accumulation in peatlands of the former soviet union . Global Biogeochem. cycles 9 , 37 – 46 .  

  4. Cao , M. and Woodward , F. I . 1998 . Dynamic responses of terrestrial ecosystem carbon cycling to global climate change . Nature 393 , 249 – 252 .  

  5. Chuprynin , V. , Zimov , S. and Molchanova , L . 2001 . Modelling of thermal conditions of soils-and-grounds subject to the biological heat source . Kriosfera Zemli 6 ( 14 ), 80 – 87 .  

  6. Clein , J. S. and Schimel , J. P . 1995 . Microbial activity of tundra and taiga soils at subzero temperatures . Soil Biol. Biochem . 27 , 1231 – 1234 .  

  7. Conrad , R . 1989 . Control of methane production in terrestrial ecosystems. In: Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere (eds M. Andreas and D. Schimel ). John Wiley & Sons Ltd, S. Bernhard, Dahlem Konferenzen, 39 – 58 .  

  8. Cox , P. , Betts , R. , Jones , C. , Spall , S. and Totterdell, 1. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408 , 184 – 187 .  

  9. Cramer , W. , Bondeau , A. , Woodward , E , Prentice , I. , Betts , R. and co-authors. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol . 7 , 357 – 373 .  

  10. Demchenko , P. F. , Eliseev , A. V. and Molchov , I. I . 2001 . Sensitivity of permafrost cover in the Northern Hemisphere to climate change . Clivar Exchanges 6 , 9 – 11 .  

  11. Dufresne , J.-L. , Friedlingstein , P. , Berthelot , M. , Bopp , L. , Ciais , P. and co-authors. 2002. On the magnitude of positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett . 6 (14), 1 – 4 .  

  12. Duval , B. and Goodwin , S . 2000 . Methane production and release from two New England peatlands . Int. MicrobioL 3 , 89 – 95 .  

  13. Fang , C. , Smith , R , Moncrieff , J. B. and Smith , J. U . 2005 . Similar response of labile and resistant soil organic matter pools to changes in temperature . Nature 433 , 57 – 59 .  

  14. Goulden , M. L. , Wofsy , S. C. , Harden , J. W. , Trumbore , S. E. , Crill , P.M. and co-authors. 1998. Sensitivity of boreal forest carbon balance to soil thaw. Science 279 (5348), 214 – 217 .  

  15. Hillel , D . 1980 . Fundamentals of Soil Physics . Academic Press , New York .  

  16. Hodgman , C. D. ed. 1960 . Handbook of Chemistry and Physics . The Chemical Rubber Publishing, Cliveland , OH .  

  17. IPCC , 1998 . The Regional Impacts of Climate Change: An Assessment of Vulnerability . Cambridge University Press , Cambridge .  

  18. IPCC , 2001 . Climate Change 2001: The Scientific Basis . Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press , Cambridge/New York .  

  19. Jackson , R. , Canadell , J. , Ehleringer , J. , Mooney , H. , Sala , O. and co-authors. 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108 , 389 – 411 .  

  20. Kaetterer , T. , Reichstein , M. , Andren , O. and Lomander , A . 1998 . Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models . Biol Fertil Soils 27 , 258 – 262 .  

  21. Keeling , R. F. , Piper , S. C. and Heimann , M . 1996 . Global and hemispheric CO2 sinks deduced from changes in atmospheric 02 concentration . Nature 381 , 218 – 221 .  

  22. Khvorostyanov , D. V. , Ciais , P. , Krinner , G. , Zimov , S. A. , Corradi , C. and co-authors. 2008. Vulnerability of permafrost carbon to global warming. Part 2: Sensitivity of permafrost carbon stock to global warming. Tellus 60B, https://doi.org/10.1111/j.1600-0889.2007.003366.x .  

  23. Knorr , W. , Prentice , I. C. , House , J. I. and Holland , E. A . 2005 . Long-term sensitivity of soil carbon turnover to warming . Nature 433 , 298 – 301 .  

  24. Koschorrek , M. and Conrad , R . 1993 . Oxidation of atmospheric methane in soil: measurements in the field, in soil cores and in soil samples . Global Biogeochem. Cycles 7 , 109 – 121 .  

  25. Krinner , G. , Viovy , N. , de Noblet-Ducoudre , N. , Ogee , J. , Polcher , J. and co-authors. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles 19, GB1015. https://doi.org/10.1029/2003GB002199 .  

  26. Lawrence , D.-M. and Slater , A. G . 2005 . A projection of severe near-surface permafrost degradation during the 21st century . Geophys. Res. Lett . 32 , L24401 .  

  27. Lloyd , J. and Taylor , J. A . 1994 . On the temperature dependence of soil respiration . Funct. EcoL 8 , 315 – 323 .  

  28. MacDonald , G. J . 1990 . Role of methane clathrates in past and future climates . Clim. Change 16 ( 3 ), 247 – 281 .  

  29. Mack , M. C. , Schuur , E. A. G. , Bret-Harte , M. S. , Shaver , G. R. and Chapin , F. S . 2004 . Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization . Nature 431 , 440 – 443 .  

  30. Marreto , T. and Mason , E . 1972 . Gaseous diffusion coefficients . J. Phys. Chem. Ref Data 1 ( 1 ), 3 – 110 .  

  31. Muhs , D. R. and Bettis , E. A. BI . 2003 . Quaternary loess-paleosol sequences as examples of climate-driven sedimentary extremes. In Special Paper 370: Extreme depositional environments: mega end members in geologic time , volume370, pages 53-74. The Geological Society of America.  

  32. Osterkamp , T. , Esch , D. and Romanovsky , V . 1998 . Permafrost. In: Implications of Global Change in Alaska and the Bering Sea Region (eds G. Weller and P. Anderson ). Proc. Workshop, June 1997, University of Alaska Fairbanks, Fairbanks, Alaska, 157.  

  33. Poutou , E. , Krinner , G. , Genthon , C. and de Noblet-Ducoudre , N . 2004 . Impact of soil freezing on future climate change . Clim. Dyn . 6 ( 14 ), 621 – 639 .  

  34. Price , S. J. , Sherlock , R. R. , Kelliher , F. M. , McSeveny , T. M. , Tate , K. R. and co-authors. 2003. Pristine New Zealand forest soil is a strong methane sink. Global Change Biol . 10 , 16 – 26 .  

  35. Ratkowsky , D. A ., 011ey, J., McMeekin, T. A. and Ball, A. 1982. Relationship between temperature and growth rate of bacterial cultures. J. BacterioL 149 , 1 – 5 .  

  36. Richardson , C. and Wright , D . 1984 . A model for generating daily weather variables . Technical report , U.S. Dept. of Agriculture , Agric. Res. Serv .  

  37. Romanovsky , N . 1993 . Osnovy Kriogeneza Litosfeiy . Moscow State University , Moscow .  

  38. Schlegel , H . 1992 . Allgemeine Mikrobiologie . Georg Thieme Verlag , Heidelberg , Germany .  

  39. Serreze , M. C. , Walsh , J. E. , Chapin , F. S. BI. , Osterkamp , T. , Dyurgerov , M. and co-authors. 2000. Observational evidence of recent change in the northern high-latitude environment. Clim. Change 46 , 159 – 207 .  

  40. Sowers , T. , Bender , M. , Raynaud , D. and Korotkvich , Y . 1992 . 315N of N2 in air trapped in polar ice: a tracer of gas transport in the firn and a possible constraint on ice age-gas differences . 97 : 15683 – 15697 .  

  41. Stendel , M. and Christensen , J. H . 2002 . Impact of global warming on permafrost conditions in a coupled GCM. Geophys. Res. Lett ., 29 (13) , https://doi.org/10.1029/2001GL014345 .  

  42. Stolbovoi , V. and McCallum , I . 2002 . CD-ROM “Land Resources of Russia” . International Institute for Applied Systems Analysis and the Russian Academy of Science , Laxenburg , Austria .  

  43. Tans , P. P . 1998 . Oxygen isotopic equilibrium between carbon dioxide and water in soils . Tellus 50B , 163 – 178 .  

  44. Tarnocai , C . 1999 . The effect of climate warming on the carbon balance of cryosols in Canada . Permafrost Periglacial Process . 10 , 251 – 263 .  

  45. Waelbroeck , C. , Monfray , P. , Oechel , W. C. , Hastings , S. and Vourlitis , G . 1997 . The impact of permafrost thawing on the carbon dynamics of tundra . Geophys. Res. Lett . 24 , 229 – 232 .  

  46. Walter , B. P. , Zimov , S. A. , Chanton , J. P. , Verbyla , D. and Chapin , F. S . 2006 . Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming . Nature 443 , 71 – 75 .  

  47. Walter , P. and Heimann , M . 2000 . A process-based, climate-sensitive model to derive methane emissions from natural wetlands: Application to five wetland sites, sensitivity to model parameters, and climate . Global Biogeochem. Cycles 6 ( 14 ), 745 – 765 .  

  48. Wiesenburg , A. and Guinasso , N. L.Jr. 1979 . Equilibrium solubilities of methane, carbon monoxide and hydrogen in water and sea water . J. Chem. Eng. Dat . 24 , 356 – 360 .  

  49. Williams , M. , Eugster , W. , Rastetter , E. B. , Mcfadden , J. P. and Chapin , F. S. BI . 2000 . The controls on net ecosystem productivity along an Arctic transect: a model comparison with flux measurements . Global Change Biol . 6 ( s1 ), 116 – 126 .  

  50. Zazula , G. D. , Froese , D. G. , Schweger , C. E. , Mathewes , R. W. , Beaudoin , A. B. and co-authors. 2003. Ice-age steppe vegetation in east beringia. Nature 423, 603 .  

  51. Zhuang , Q. , McGuire , A. D. , Melillo , J. M. , Clein , J. S. , Dargaville , R. J. and co-authors. 2003. Carbon cycling in extratropical ecosytems of the northern hemisphere during the 20th century: a modelling analysis of the influences of soil thermal dynamics. Tellus 55B, 751 – 776 .  

  52. Zimov , S. A . 2005 . Pleistocene Park: Return of the Mammoth's Ecosystem . Science 308 , 796 – 798 .  

  53. Zimov , S. A. , Davydov , S. , Zimova , G. , Davydova , A. I. , Zimov , N. S. and co-authors. 2004. The role of the permafrost reservoir in the global carbon budget. In: AGU Abstracts , B31A-0204. American Geophysical Union .  

  54. Zimov , S. A. , Schuur , E. A. G. and Chapin , F. S. ifi. 2006 . Permafrost and the Global Carbon Budget . Science 312 , 1612 – 1613 .  

  55. Zimov , S. A. , Voropaev , Y. V , Semiletov , I. R , Davidov , S. P. , Prosiannikov , S . E and co-authors. 1997. North Siberian lakes: a methane source fueled by pleistocene carbon. Science 277 , 800 – 802 .  

comments powered by Disqus