Start Submission Become a Reviewer

Reading: Spatial and seasonal variations in the stable carbon isotopic composition of methane in stre...

Download

A- A+
Alt. Display

Original Research Papers

Spatial and seasonal variations in the stable carbon isotopic composition of methane in stream sediments of eastern Amazonia

Authors:

José Mauro Sousa Moura ,

Centro de Energia Nuclear na Agricultura –CENA/USP, Avenida Centenário, 303, São Dimas, 13416-903, Piracicaba, SP, BR
X close

Christopher S. Martens,

Department of Marine Sciences, CB-3300, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3300, US
X close

Marcelo Zacharias Moreira,

Centro de Energia Nuclear na Agricultura –CENA/USP, Avenida Centenário, 303, São Dimas, 13416-903, Piracicaba, SP, BR
X close

Risonaldo Leal Lima,

Projeto LBA-ECO, Rua Vera Paz, S/N, Salé, 68040-260, Santarém, PA, BR
X close

Irene Cibelle Gonçalves Sampaio,

Projeto LBA-ECO, Rua Vera Paz, S/N, Salé, 68040-260, Santarém, PA, BR
X close

Howard P. Mendlovitz,

Department of Marine Sciences, CB-3300, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3300, US
X close

Mary C. Menton

Center for Latin American Studies, University of Florida, 319 Grinter Hall PO Box 115530, Gainesville, Florida 32611-5530, US
X close

Abstract

The stable carbon isotopic composition of methane (δ13C-CH4) gas bubbles formed in the sediments of three Amazonian streamswas determined over a 5-yr period. The study sites were two ‘várzea’ floodplain (Açu and Maicá) and one ‘terrafirme’ (Jamaraquá) streams. The δ13C of sedimentary organic matter (SOM) from the surrounding vegetation and bottom sediments were also determined. The mean δ13C value of SOM was lower in the terra-firme (–29.6‰) than in the várzea stream (–23.8‰) as a result of less C4 plant deposition in the former. The δ13C-CH4 values varied systematically both seasonally and spatially among the sites during all 5 yr of the study, in association with changes during hydrologic cycle. Overall, the variation in values of δ13C-CH4 during the high water phase covered a narrower range of values, –63 to –56‰. Contrastively, during the low water phase the δ13C-CH4 values for várzea and terra-firme streams are different and are in direct opposition. At this phase, the δ13C-CH4 at terra-firme stream is at least 20‰ depleted of 13C compared to várzea streams. Changes in organic matter sources, water levels and associated microbial degradation processes control the observed seasonal and spatial variations in net stable carbon isotopic composition of methane.

How to Cite: Moura, J.M.S., Martens, C.S., Moreira, M.Z., Lima, R.L., Sampaio, I.C.G., Mendlovitz, H.P. and Menton, M.C., 2008. Spatial and seasonal variations in the stable carbon isotopic composition of methane in stream sediments of eastern Amazonia. Tellus B: Chemical and Physical Meteorology, 60(1), pp.21–31. DOI: http://doi.org/10.1111/j.1600-0889.2007.00322.x
5
Views
2
Downloads
  Published on 01 Jan 2008
 Accepted on 14 Aug 2007            Submitted on 6 Dec 2006

Reference

  1. Adams , D. , Seitzinger , S. P. and Crill , P. C . 1996 . Cycling of reduced gases in the hydrosphere. International Association of Theoretical and Applied Limnology . E. Schweizerbaresche Verlagsbuchhandlung, Stuttgart , 25 , 5 – 9 .  

  2. Alperin , M. J. , Blair , N. E. , Albert , D. B. , Hoehler , T. M. and Martens , C. S . 1992 . Factors that control the stable isotopic composition of methane produced in an anoxic marine sediment . Glob. Biogeochem. Cycle 6 , 271 – 291 .  

  3. Bartlett , K. B. and Harriss , R. C . 1993 . Review and assessment of methane emissions from wetlands . Chemosphere 26 , 261 – 320 .  

  4. Bartlett , K. B. , Crill , P. M. , Bonassi , J. A. , Richey , J. E. and Harriss , R. C . 1990 . Methane flux from the Amazon River floodplain - Emissions during rising water . J. Geophys. Res.-Atmos . 95 , 16773 – 16788 .  

  5. Blair , N. E. , Boehme , S. E. and Chanton , J. P . 1987 . Seasonal variation in E CO2 31-3C values from an anoxic coastal sediment . Abstr. Pap. Am. Chem. Soc . 193 , 77–G EOC .  

  6. Breas , O. , Guillou , C. , Reniero , F. and Wada , E . 2002 . The global methane cycle: isotopes and mixing ratios, sources and sinks . Isot. Environ. Health Stud . 37 , 257 – 379 .  

  7. Carmo , J. B. , Keller , M. , Dias , J. D. , Camargo , P. B. and Crill , P . 2006 . A source of methane from upland forests in the Brazilian Amazon. Geophys. Res. Lett . 33,  

  8. Chanton , J. P . 2005 . The effect of gas transport on the isotope signature of methane in wetlands . Org. Geochem . 36 , 753 – 768 .  

  9. Chanton , J. P. and Martens , C. S . 1988 . Seasonal variations in ebulitive flux and carbon isotopic composition of methane in a tidal freshwater estuary . Glob. Biogeochem. Cycle 2 , 289 – 298 .  

  10. Chanton , J. , Crill , P. , Bartlett , K. and Martens , C . 1989 . Amazon capims (floating grassmats): a source of 1-3C enriched methane to the troposphere . Geophys. Res. Lett . 16 , 799 – 802 .  

  11. Chanton , J. P. , Martens , C. S. , Kelley , C. A. , Crill , P. M. and Showers , W. J . 1992 . Methane transport mechanisms and isotopic fractionation in emergent macrophytes of an Alaskan tundra lake . J. Geophys. Res.-Atmos . 97 , 16681 – 16688 .  

  12. Chappellaz , J. , Barnola , J. M. , Raynaud , D. , Korotkevich , Y. S. and Lorius , C . 1990 . Ice-core record of atmospheric methane over the past 160,000 years . Nature 345 , 127 – 131 .  

  13. Cicerone , R. J. and Oremland , R. S . 1988 . Biogeochemical aspects of atmospheric methane . Glob. Biogeochem. Cycle 2 , 299 – 327 .  

  14. De Simone , O. , Muller , E. , Junk , W. J. and Schmidt , W . 2002 . Adaptations of central Amazon tree species to prolonged flooding: root morphology and leaf longevity . Plant Biol . 4 , 515 – 522 .  

  15. De Simone , O. , Junk , W. J. and Schmidt , W . 2003 . Central Amazon floodplain forests: root adaptations to prolonged flooding . Russ. J. Plant PhysioL 50 , 848 – 855 .  

  16. Devol , A. H. , Forsberg , B. R. , Richey , J. E. and Pimentel , T. P . 1995 . Seasonal variation in chemical distributions in the Amazon (Solimoes) River: a multiyear time series . Glob. Biogeochem. Cycle 9 , 307 – 328 .  

  17. Devol , A. H. , Richey , J. E. , King , L. S. , Lansdown , J. and Martinelli , L. A . 1996 . Seasonal variations in the 1-3C-CH4 of Amazon floodplain waters . Int. Assoc. Theor Appl. Limnol . 25 , 173 – 178 .  

  18. Etheridge , D. M. , Steele , L. P. , Francey , R. J. and Langenfelds , R. L . 1998 . Atmospheric methane between 1000 AD and present: evidence of anthropogenic emissions and climatic variability . J. Geophys. Res.-Atmos . 103 , 15979 – 15993 .  

  19. Gelwicics , J. T. , Risatti , J. B. and Hayes , J. M . 1994 . Carbon isotope effects associated with aceticlastic methanogenesis . AppL Environ. Micro biol . 60 , 467 – 472 .  

  20. Gupta , M. , Tyler , S. and Cicerone , R . 1996 . Modeling atmospheric 3 13 CH and the causes of recent changes in atmospheric CH4 amounts . J. Geophys. Res.-Atmos . 101 , 22923 – 22932 .  

  21. Hedges , J. I. , Clark , W. A. , Quay , P. D. , Richey , J. E. , Devol , A. H. , and co-authors. 1986. Compositions and fluxes of particulate organic material in the Amazon River. Limnol. Oceanogr 31 , 717 – 738 .  

  22. Hornibrook , E. R. C. , Longstaffe , F. J. and Fyfe , W. S . 2000a . Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments . Geochim. Cosmochim. Acta 64 , 1013 – 1027 .  

  23. Hornibrook , E. R. C. , Longstaffe , F. J. and Fyfe , W. S . 2000b . Factors influencing stable isotope ratios in CH4 and CO2 within subenvironments of freshwater wetlands: implications for 3-signatures of emissions . Isot. Environ. Health Stud . 36 , 151 – 176 .  

  24. Intergovernmental Panel on Climate Change 2001 . Climate Change 2001: The Scientific Basis (eds J. T. Houghton , Y. Ding , D. J. Griggs , M. Noguer , P. J. vanderLinden , X. Dai , K. Maskell and C. A. Johnson ). University Press , Cambridge .  

  25. Junk , W. J . 1970 . Investigations on the ecology and production-biology of the “floating meadows” (Paspalo-Echinochloetum) on the Middle Amazon. Part I. The floating vegetation and its ecology . Amazoniana 2 , 449 – 495 .  

  26. Junk , W. J . 1997 . The Central Amazon Floodplain: Ecology of a Pulsing System (ed . W. C. Junk). Springer , Berlin , 520 p .  

  27. Junk , W. J. , Ohly , J. J. , Piedade , M. T. F. and Soares , M. G. M . 2001 . Central Amazon Floodplain: Actual use and Options fora Sustainable Management (ed. Backhuys). Backhuys , Leiden , p. 590 p .  

  28. Junk , W. J. and Piedade , M. T. E 1993 . Biomass and primary-production of herbaceous plant communities in the Amazon floodplain . Hydrobiologia 263 , 155 – 162 .  

  29. Kelley , C. A. , Dise , N. B. and Martens , C. S . 1992 . Temporal variations in the stable carbon isotopic composition of methane emitted from Minnesota Peatlands . Glob. Biogeochem. Cycle 6 , 263 – 269 .  

  30. Keppler , F. , Hamilton , J. T. G. , Brass , M. and Röckmann , T . 2006 . Methane emissions from terrestrial plants under aerobic conditions . Nature 439 , 187 – 191 .  

  31. Khalil , M. A. K. and Rasmussen , R. A . 2004 . Changes in the regional emissions of greenhouse gases and ozone-depleting compounds . Environ. Sci. TechnoL 38 , 364 – 366 .  

  32. Kirschbaum , M. U. F. , Bruhn , D. , Etheridge , D. M. , Evans , J. R. , Farquhar , G. D. , and co-authors. 2006. A comment on the quantitative significance of aerobic methane release by plants. Funct. Plant Biol . 33 , 521 – 530 .  

  33. Kruger , M. , Eller , G. , Conrad , R. and Frenzel , P . 2002 . Seasonal variation in pathways of CH4 production and in CH4 oxidation in rice fields determined by stable carbon isotopes and specific inhibitors . Glob. Change Biol . 8 , 265 – 280 .  

  34. Marik , T. , Fischer , H. , Conen , F. and Smith , K . 2002 . Seasonal variations in stable carbon and hydrogen isotope ratios in methane from rice fields . Glob. Biogeochem. Cycle 16 , 41 – 52 .  

  35. Martens , C. S. , Blair , N. E. , Green , C. D. and Des Marais , D. J . 1986 . Seasonal variations in the stable carbon isotopic signature of biogenic methane in a coastal sediment . Science 233 , 1300 – 1303 .  

  36. Martens , C. S. , Kelley , C. A. , Chanton , J. P. and Showers , W. J . 1992 . Carbon and hydrogen isotopic characterization of methane from wetlands and lakes of the Yukon-Kuskokwim Delta, Western Alaska . J. Geophys. Res.-Atmos . 97 , 16689 – 16701 .  

  37. Martinelli , L. A. , Victoria , R. L. , Camargo , P. B. , Piccolo , M. D. , Mertes , L. , and co-authors. 2003. Inland variability of carbon-nitrogen concentrations and 313C in Amazon floodplain (varzea) vegetation and sediment. Hydrol. Process . 17, 1419-143 0 .  

  38. Mathuriau , C. and Chauvet , E . 2002 . Breakdown of leaf litter in a neotropical stream . J. N. Am. Benthol. Soc . 21 , 384 – 396 .  

  39. Melack , J. M. , Hess , L. L. , Gastil , M. , Forsberg , B. R. , Hamilton , S. K. , and co-authors. 2004. Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Glob. Change Biol . 10 , 530 – 544 .  

  40. Ometto , J. , Ehleringer , J. R. , Domingues , T. F. , Berry , J. A. , Ishida , F. Y. , and co-authors. 2006. The stable carbon and nitrogen isotopic composition of vegetation in tropical forests of the Amazon Basin, Brazil. Biogeochemistiy 79 , 251 – 274 .  

  41. Quay , R , King , S. L. , Lansdown , J. and Wilbur , D . 1988 . Isotopic composition of methane released from wetlands: implications for the increase in atmospheric methane . Glob. Biogeochem. Cycle 2 , 385 – 397 .  

  42. Rice , A. H. , Pyle , E. H. , Saleslca , S. R. , Hutyra , L. , Palace , M. , and co-authors. 2004. Carbon balance and vegetation dynamics in an old-growth Amazonian forest. EcoL AppL 14, S55-S71 .  

  43. Ridal , M. and Siskind , D. E . 2002 . A two-dimensional simulation of the isotopic composition of water vapor and methane in the upper atmosphere . J. Geophys. Res.-Atmos . 107 , 241 – 248 .  

  44. Rudd , J. W. M. , Hamilton , R. D. and Campbell , N. E . 1974 . Measurement of microbial oxidation of methane in lake water . LimnoL Oceanogr 19 , 519 – 524 .  

  45. Statistical Analyze Systems (SAS) . 2001. V8e. Cary, NC.  

  46. Sioli , H . 1970 . Limnological conditions in central Amazonia . J. EcoL 58 , 3 – 17 .  

  47. Stevens , C. M . 1988 . Atmospheric methane . Chem. Geol . 71 , 11 – 21 .  

  48. Stevens , C. M. and Engelkemeir , A . 1988 . Stable carbon isotopic composition of methane from some natural and anthropogenic sources . J. Geophys. Res.-Atmos . 93 , 725 – 733 .  

  49. Sugimoto , A. and Fujita , N . 1997 . Characteristics of methane emission from different vegetations on a wetland . Tellus 49B , 382 – 392 .  

  50. Sugimoto , A. and Wada , E . 1993 . Carbon isotopic composition of bacterial methane in a soil incubation experiment: contributions of acetate and CO2/H2 . Geochim. Cosmochim. Acta 57 , 4015 – 4027 .  

  51. Tyler , S. C. , Blake , D. R. and Rowland , F. S . 1987 . 13C/12C ratio in methane from the flooded Amazon forest . J. Geophys. Res.-Atmos . 92 , 1044 – 1048 .  

  52. Victoria , R. L. , Martinelli , L. A. , Trivelin , P. C. O. , Matsui , E. , Forsberg , B. R. , and co-authors. 1992. The use of stable isotopes in studies of nutrient cycling: carbon isotope composition of Amazon varzea sediments. Biotropica 24 , 240 – 249 .  

  53. Voytov , G. I . 1975 . Chemical and isotopic composition of subsoil and marsh gases of the Kola Tundras . Doklady Akad Nauk 186 – 188 .  

  54. Wahlen , M. , Tanaka , N. , Henry , R. , Deck , B. , Zeglen , J. , and co-authors. 1989.14C in methane sources and in atmospheric methane: the contribution from fossil carbon. Science 245 , 286 – 290 .  

  55. Wassmann , R. , Them , U. G. , Whiticar , M. J. , Rennenberg , H. , Selter , W. , and co-authors. 1992. Methane emissions from the Amazon flood-plain: characterization of production and transport. Glob. Biogeochem. Cycle 6 , 3 – 13 .  

  56. Whiticar , M. J. , Faber , E. and Schoell , M . 1986 . Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation - Isotope evidence . Geochim. Cosmochim. Acta 50 , 693 – 709 .  

  57. Wuebbles , D. J. and Hayhoe , K . 2002 . Atmospheric methane and global change . Earth-Sci. Rev . 57 , 177 – 210 .  

comments powered by Disqus