Start Submission Become a Reviewer

Reading: Wintertime CO2 exchange in a boreal agricultural peat soil

Download

A- A+
Alt. Display

Original Research Papers

Wintertime CO2 exchange in a boreal agricultural peat soil

Authors:

Annalea Lohila ,

Finnish Meteorological Institute, FI
X close

Mika Aurela,

Finnish Meteorological Institute, FI
X close

Kristiina Regina,

Agrifood Research Finland, FI
X close

Juha-Pekka Tuovinen,

Finnish Meteorological Institute, FI
X close

Tuomas Laurila

Finnish Meteorological Institute, FI
X close

Abstract

We measured the carbon dioxide (CO2) exchange with the eddy covariance (EC) method through three winters above a cultivated peat soil. During the first winter, the soil was ploughed, while for the next two winters it was grass-covered. On a weekly timescale, the emission was controlled by the soil temperature, whereas the vegetation had no clear impact. The deeper soil temperatures better correlated with the CO2 efflux, especially in frozen soil. The correlation with the air temperature was poor. After a mid-winter snowmelt, decreased CO2 efflux rates were temporarily detected, probably resulting from a lowered diffusion of CO2 from the soil air into the atmosphere. Moderate soil-thaw CO2 pulses were observed in the springs of 2001 and 2003. CO2 emission rates measured with the EC method were found to be significantly lower as compared to those measured with the chamber method. The cumulative CO2 emission between December and mid-March ranged from 80 to 178 g m-2 during three winters, correlating positively with air and soil temperatures and the number of snow-free days during that period. The projected increase in the air temperature related to global warming would boost the wintertime CO2 efflux at our site by 30–200% (35–114 g m-2), depending on the selected emission scenario.

How to Cite: Lohila, A., Aurela, M., Regina, K., Tuovinen, J.-P. and Laurila, T., 2007. Wintertime CO2 exchange in a boreal agricultural peat soil. Tellus B: Chemical and Physical Meteorology, 59(5), pp.860–873. DOI: http://doi.org/10.1111/j.1600-0889.2007.00314.x
  Published on 01 Jan 2007
 Accepted on 28 Jun 2007            Submitted on 29 Nov 2006

Reference

  1. Aurela , M. , Laurila , T. and Tuovinen , J.-P . 2002 . Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux . J. Geophys. Res . 107 , 4607 , doi: https://doi.org/10.1029/2002JDO02055 .  

  2. Baldocchi , D. D . 2003 . Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future . Global Change Biol . 9 , 479 – 492 .  

  3. Brooks , P. D. , Schmidt , S. K. and Williams , M. W . 1997 . Winter production of CO2 and N20 from alpine tundra: environmental controls and relationship to inter-system C and N fluxes . Oecologia 110 , 403 – 413 .  

  4. Fahnestock , J. T. , Jones , M. H. and Welker , J. M . 1999 . Wintertime CO2 efflux from arctic soils: Implications for annual carbon budgets . Global Biogeochem. Cycles 13 , 775 – 779 .  

  5. Finnish Meteorological Institute . 2002 . Climatological Statistics of Finland 1971-2000. No. 2002:1 , Edita Prima Oy , Helsinki , Finland .  

  6. Flessa , H. , Wild , U. , Klemisch , M. and Pfadenhauer , J . 1998 . Nitrous oxide and methane fluxes from organic soils under agriculture. Eur J . Soil Sci 49 , 327 – 335 .  

  7. Friborg , T. , Christensen , T. R. and Soegaard , H . 1997 . Rapid response of greenhouse gas emissions to early spring thaw in a subarctic mire as shown by micrometeorological techniques . Geophys. Res. Lett . 24 , 3061 – 3064 .  

  8. Goulden , M. L. , Munger , J. W. , Fan , S.-M. , Daube , B. C. and Wofsy , S. C . 1996 . Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy . Global Change Biol . 2 , 169 – 182 .  

  9. Jylhä , K. , Tuomenvirta , H. and Ruosteenoja , K . 2004 . Climate change projections for Finland during the 21st century . Boreal Env. Res . 9 , 127 – 152 .  

  10. Koizumi , H. , Kontturi , M. , Mariko , S. and Mela , T . 1996 . Carbon dioxide evolution from snow-covered agricultural ecosystems in Finland . Agric. Food Sci. Finland 5 , 421 – 430 .  

  11. Koponen , H. T. , Flöjt , L. and Martilcainen , P. J . 2004 . Nitrous oxide emissions from agricultural soils at low temperatures: a laboratory microcosm study . Soil Biol Biochem 36 , 757 – 766 .  

  12. Liski , J. , Ilvesniemi , H. , Mäkelä , A. and Westman , C. J . 1999 . CO2 emissions from soil in response to climatic warming are overestimated—the decomposition of old soil organic matter is tolerant of temperature . Ambio 28 , 171 – 174 .  

  13. Lloyd , J. and Taylor , J. A . 1994 . On the temperature dependence of soil respiration . FuncL Ecol . 8 , 315 – 323 .  

  14. Lohila , A. , Aurela , M. , Regina , K. and Laurila , T . 2003 . Soil and total ecosystem respiration in agricultural fields: effect of soil and crop type . Plant Soil 251 , 303 – 317 .  

  15. Lohila , A. , Aurela , M. , Tuovinen , J.-P. and Laurila , T . 2004 . Annual CO2 exchange of a peat field growing spring barley or perennial forage grass . J. Geophys. Res . 109 ( D18116 ), doi: https://doi.org/10.1029/2004JD004715.  

  16. Maljanen , M. , Martilcainen , P. J. , Walden , J. and Silvola , J. 2001. CO2 exchange in an organic field growing barley or grass in eastern Finland. Global Change Biol . 7 , 679 – 692 .  

  17. Maljanen , M. , Liilcanen , A. , Silvola , J. and Martilcainen , P. J . 2003a . Measuring N20 emissions from organic soils with closed chamber or soil/snow N20 gradient methods. Europ. J. Soil Sci 54 , 625 – 631 .  

  18. Maljanen , M. , Liilcanen , A. , Silvola , J. and Martilcainen , P. J . 2003b . Nitrous oxide emissions from boreal organic soil under different land-use . Soil Biol. Biochem . 35 , 689 – 700 .  

  19. Mariko , S. , Nishimura , N. , Mo , W. , Matsui , Y. , Kibe , T. and Koizumi , H . 2000 . Winter CO2 flux from soil and snow surfaces in a cool-temperate deciduous forest, Japan . EcoL Res . 15 , 363 – 372 .  

  20. Massman , W.J , Sommerfeld , R. A. , Mosier , A. R. , Zeller , K. E , Hehn , T. J. , and co-authors. 1997. A model investigation of turbulence-driven pressure-pumping effects on the rate of diffusion of CO2, N20, and Cat through layered snowpacics. J. Geophys. Res . 102 , 18851 – 18863 .  

  21. Mast , M. A. , Kimberly , P. W. , Striegl , R. T. and Clow , D. W . 1998 . Winter fluxes of CO2 and CH4 from subalpine soils in Rocky Mountain National Park, Colorado . Global Biogeochem. Cycles 12 , 607 – 620 .  

  22. Monson , R. K. , Burns , S. P. , Williams , M. W. , Delany , A. C. , Weintraub , M. , and co-authors. 2006. The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. Global Biogeochem. Cycles , 20, GB3030, doi: https://doi.org/10.1029/2005GB002684 .  

  23. Panikov , N. S. and Dedysh , S. N . 2000 . Cold season CH4 and CO2 emissions from boreal peat bogs (West Siberia): winter fluxes and thaw activation dynamics . Global Biogeochem. Cycles 14 , 1071 – 1080 .  

  24. Pumpanen , J. , Kolari , P. , Ilvesniemi , H. , Minklcinen , K. , Vesala , T. , and co-authors. 2004. Comparison of different chamber techniques for measuring soil CO2 efflux. Agric. For MeteoroL 123 , 159 – 176 .  

  25. Raich , J. W. and Potter , C. S . 1995 . Global patterns of carbon dioxide emissions from soils . Global Biogeochem. Cycles 9 , 23 – 26 .  

  26. Raich , J. W. and Tufekcioglu , A . 2000 . Vegetation and soil respiration: Correlations and controls . Biogeochemistiy 48 , 71 – 90 .  

  27. Regina , K. , Syväsalo , E. , Hannuklcala , A. and Esala , M . 2004 . Fluxes of N20 from farmed peat soils in Finland. Eur J . Soil Sci , 55 , 591 – 599 .  

  28. Reth , S. , Reichstein , M. and Falge , E . 2005 . The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux—a modified model . Plant Soil 268 , 21 – 33 .  

  29. Rey , A. , Pegoraro , E. , Tedeschi , V , De Parri , I. , Jarvis , P. G. , and co-authors. 2002. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biol . 8 , 851 – 866 .  

  30. Schimel , J. P. and Clein , J. S . 1996 . Microbial response to freeze-thaw cycles in tundra and taiga soils . Soil Biol. Biochem . 28 , 1061 – 1066 .  

  31. Sevanto , S. , Suni , T. , Pumpanen , J. , Grönholm , T. , Kolari , P. , and co-authors. 2006. Wintertime photosynthesis and water uptake in a boreal forest. Tree PhysioL 26 , 749 – 757 .  

  32. van Bochove , E. , Jones , H. G. , Bertrand , N. and Prevost , D . 2000 . Winter fluxes of greenhouse gases from snow-covered agricultural soil: intra-annual and interannual variations . Global Biogeochem. Cycles 14 , 113 – 125 .  

  33. Vendlainen , A. , Tuomenvirta , H. , Heilcinheimo , M. , Kellomälci , S. , Peltola , H. , and co-authors. 2001. Impact of climate change on soil frost under snow cover in a forested landscape. Clim. Res . 17 , 63 – 72 .  

comments powered by Disqus