Start Submission Become a Reviewer

Reading: Parametrization of two photosynthesis models at the canopy scale in a northern boreal Scots ...

Download

A- A+
Alt. Display

Original Research Papers

Parametrization of two photosynthesis models at the canopy scale in a northern boreal Scots pine forest

Authors:

Tea Thum ,

Finnish Meteorological Institute, Global and Climate Change Research, FI
X close

Tuula Aalto,

Finnish Meteorological Institute, Global and Climate Change Research, FI
X close

Tuomas Laurila,

Finnish Meteorological Institute, Global and Climate Change Research, FI
X close

Mika Aurela,

Finnish Meteorological Institute, Global and Climate Change Research, FI
X close

Pasi Kolari,

University of Helsinki, Department of Forest Ecology, FI
X close

Pertti Hari

University of Helsinki, Department of Forest Ecology, FI
X close

Abstract

In thiswork, eddy covariance data from a northern boreal Scots pine (Pinus sylvestris) stand were used in the parametrization of two up-scaled leaf-level photosynthesis models. The parametrization was carried out by eddy covariance data inversion. The biochemically based Farquhar model parameters, the maximum rate of electron transport (Jmax) and maximum rate of carboxylation [V c(max)], were both obtained from the temperature responses measured by the eddy covariance. The semi-empirical model, based on optimizing water use and carbon gain, was parametrized according to the seasonal behaviour of the parameter β The parametrization of the models was performed for the year 2001, while 2002 was used as a test year to study the models’ capabilities. Both of the models tracked daily CO2 assimilation fairly well, reaching the high growing-season rates in mid-June and starting the autumn drawdown at the beginning of September. The incapability of the models to track the diminishing of CO2 fluxes during very dry days brings up the issue of combining a soil model into the canopy model. The biochemical model parameters have temperature responses that change during the growing season. The biochemical model responds more to the temperature, whereas the semi-empirical model is strongly driven by the light level.

How to Cite: Thum, T., Aalto, T., Laurila, T., Aurela, M., Kolari, P. and Hari, P., 2007. Parametrization of two photosynthesis models at the canopy scale in a northern boreal Scots pine forest. Tellus B: Chemical and Physical Meteorology, 59(5), pp.847–890. DOI: http://doi.org/10.1111/j.1600-0889.2007.00305.x
1
Views
  Published on 01 Jan 2007
 Accepted on 15 Jun 2007            Submitted on 31 Oct 2006

Reference

  1. Aalto , T ., 1998 . Carbon dioxide exchange of Scots pine shoots as estimated by a biochemical model and cuvette field measurements . Silva Fennica 32 , 321 – 337 .  

  2. Aalto , T. , Hari , P. and Vesala , T ., 2002 . Comparison of an optimal stomatal regulation model and a biochemical model in explaining CO2 exchange in field conditions . Silva Fennica 36 , 615 – 623 .  

  3. Arneth , A. , Kelliher , E M. , McSeveny , T. M. and Byers , J. N ., 1998 . Assessment of annual carbon balance in a water-stressed Pinus radiata plantation: an analysis based on eddy covariance measurements and an integrated biophysical model . Global Change Biol . 5 , 531 – 545 .  

  4. Aubinet , M. , Grelle , A. , Ibrom , A. , Rannik , U. , Moncrieff , J. and co-authors. 2000. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv. EcoL Res . 30 , 114 – 175 .  

  5. Aurela , M ., 2005. Carbon dioxide exchange in subarctic ecosystems measured by a micrometeorological technique. Contributions 51, Finnish Meteorological Institute, Helsinki, Finland, 132 pp.  

  6. Ball , J. T. , Woodrow , I. E. and Berry , J. A ., 1987 . A model for predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions . In: Progress in photosynthesis research Volume IV ( ed. I. Biggings ). Martinus Nijhoff Publishers , Netherlands , 221 – 224 .  

  7. Bergh , J. , McMurtrie , R. E. and Linder , S . 1998 . Climatic factors controlling the productivity of Norway spruce: a model-based analysis . Forest EcoL Manage . 110 , 127 – 139 .  

  8. Beminger , E , Mäkeld , A. and Hari , P ., 1996 . Optimal control of gas exchange during drought: empirical evidence . Ann. BoL 77 , 469 – 476 .  

  9. Boote , K. J. and Loomis , R. S . 1991 . The prediction of canopy assimilation. In: Modeling Crop Photosynthesis — From Biochemistry to Canopy (eds K. J. Boote and R. S. Loomis ). Special Publication no. 19, CSSA, Madison, 109 – 140 .  

  10. Brooks , A. and Farquhar , G. D ., 1985 . Effect of temperature on the CO2/02 specificity of ribulose 1,5-biphosphate carboxylase/oxygenase and the rate of respiration in the light . Planta 165 , 397 – 406 .  

  11. Brooks , J. R. , Flanagan , L. B. , Varney , G. T. and Ehleringer , J. R ., 1997 . Vertical gradients in photosynthetic gas exchange characteristics and refixation of respired CO2 within boreal forest canopies . Tree PhysioL 17 , 1 – 12 .  

  12. Cowan , I. R ., 1977 . Stomatal behavior and the environment . Adv. Bot. Res . 4 , 117 – 227 .  

  13. de Pury , D. G. G. and Farquhar , G. D ., 1997 . Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models . Plant, Cell Environ . 20 , 539 – 557 .  

  14. Dewar , R. C. , Medlyn , B. E. and McMurtrie , R. E . 1998 . A mechanistic analysis of light and carbon use efficiencies . Plant, Cell Environ . 21 , 573 – 588 .  

  15. Eichelmann , H. , Oja , V. , Rasulov , B. , Padu , E. , Bichele , I. and co-authors. 2005. Adjustment of leaf photosynthesis to shade in a natural canopy: reallocation of nitrogen. Plant, Cell Environ . 28 , 389 – 401 .  

  16. Evans , J. R . 1989 . Photosynthesis and nitrogen relationships in leaves of C3 plants . Oecologia 78 , 9 – 19 .  

  17. Farquhar , G. D. , von Caemmerer , S. and Berry , J. A . 1980 . A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species . Planta 149 , 78 – 90 .  

  18. Field , C . 1983 . Allocating leaf nitrogen for the maximization of carbon gain: leaf age as a control on the allocation program . Oecologia 56 , 341 – 347 .  

  19. Hällgren , J.-E. , Lundmark , T. and Strand , M . 1990 . Photosynthesis of Scots pine in the field after night frosts during summer . Plant PhysioL Biochem . 28 , 437 – 445 .  

  20. Hari , P. , Maelä , A. , Korpilahti , E. and Holmberg , M . 1986 . Optimal control of gas exchange . Tree PhysioL 2 , 169 – 175 .  

  21. Hari , P. , Maelä , A ., Beminger, E. and Pohja, T. 1999 . Field evidence for the optimality hypothesis of gas exchange in plants. Autr J. Plant PhysioL 26 , 239 – 244 .  

  22. Hari , P. and Mäkelä , A . 2003 . Annual pattern of photosynthesis in Scots pine in the boreal zone . Tree PhysioL 23 , 145 – 155 .  

  23. Harley , P. C. and Baldocchi , D . 1995 . Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. I. Leaf model parametrization . Plant, Cell Environ . 18 , 1146 – 1156 .  

  24. Harley , P. C. , Thomas , R. B. , Reynolds , J. E and Strain , B. R . 1992 . Modelling photosynthesis of cotton grown in elevated CO2 . Plant, Cell Environ . 15 , 271 – 282 .  

  25. Hollinger , D. Y . 1996 . Optimality and nitrogen allocation in a tree canopy . Tree PhysioL 16 , 627 – 634 .  

  26. Hollinger , D. Y. , Kelliher , E M. , Schulze , E.-D. , Bauer , G. , Ameth , A. and co-authors. 1998. Forest-atmosphere carbon dioxide exchange in eastern Siberia. Agri. Forest Meteorol . 90 , 291 – 306 .  

  27. Juurola , E. , Aalto , T. , Thum , T. , Vesala , T. and Hari , P . 2005 . Temperature dependence of leaf-level CO2 fixation: revising biochemical coefficients through analysis of three-dimensional structure . New PhytoL 166 , 205 – 215 .  

  28. Kellomäki , S. and Wang , K.-Y . 2000 . Short-term environmental controls on carbon dioxide flux in a boreal coniferous forest: model computation compared with measurements by eddy covariance . EcoL Model . 128 , 63 – 88 .  

  29. Knorr , W . 1997 . Satellite remote sensing and modelling of the global CO2 exchange of land vegetation: A synthesis study. Max-Planck-Institut fiir Meteorologie, Examensarbeit Nr. 49, Hamburg, Germany, 189 pp.  

  30. Knorr , W. and Kattge , J . 2005 . Inversion of terrestrial ecosystem model parameter values against eddy covariance measurements by Monte Carlo sampling . Global Change Biol . 11 , 1333 – 1351 .  

  31. Kolari , P. , Lappalainen , H. K. , Härminen , H. and Hari , P . 2007 . Relationship between temperature and the seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone . Tellus 59B , 542 – 552 .  

  32. Kosugi , Y. , Shibata , S. and Kobashi , S . 2003 . Parameterization of the CO2 and H20 gas exchange of several temperate deciduous broad-leaved trees at the leaf scale . Plant, Cell Environ . 26 , 285 – 301 .  

  33. Kull , O. and Jarvis , P.G . 1995 . The role of nitrogen in a simple scheme to scale up photosynthesis from leaf to canopy . Plant, Cell Environ . 18 , 1174 – 1182 .  

  34. Lagarias , J. C. , Reeds , J. A. , Wright , M. H. and Wright , P. E . 1998 . Convergence properties of the Nelder-Mead simplex method in low dimensions . SIAM J. Opt . 9 , 112 – 147 .  

  35. Law , B. E. , Williams , M. and Anthony , P.M . 2000 . Measuring and modelling seasonal variation of carbon dioxide and water vapour exchange of a Pinus ponderosa forest subject to soil water deficit . Global Change Biol . 6 , 613 – 630 .  

  36. Leuning , R . 1997 . Scaling to a common temperature improves the correlation between photosynthesis parameters Jmax and Vcmax • J . Exp. Bot . 307 , 345 – 347 .  

  37. Leuning , R . 2002 . Temperature dependence of two parameters in a photosynthesis model . Plant, Cell Environ . 25 , 1205 – 1210 .  

  38. LiCor Inc , 1999 . Using the LI-6400 . LiCor Inc ., Nebraska , 846 pp .  

  39. Lloyd , J. and Taylor , J.A . 1994 . On the temperature dependence of soil respiration . Funct. EcoL 8 , 315 – 323 .  

  40. Lloyd , J. , Wong , S. C. , Styles , J. M. , Batten , D. , Priddle , R. and co-authors. 1995. Measuring and modelling whole-tree gas exchange. Austr J. Plant PhysioL 22 , 987 – 1000 .  

  41. Lloyd , J. , Shibistova , O. , Zolotoukhine , D. , Kolle , O. , Ameth , A. and co-authors. 2002. Seasonal and annual variations in the photosynthetic productivity and carbon balance of a central Siberian pine forest. Tellus 54B , 590 – 610  

  42. Maelä , A ., Berninger, E and Hari, P. 1996. Optimal control of gas exchange during drought: theoretical analysis. Ann. Bot . 77 , 461 – 467 .  

  43. Maelä , A. , Hari , P. , Beminger , E , Hänninen , H. and Nikinmaa , E . 2004 . Acclimation of photosynthetic capacity in Scots pine to the annual cycle of temperature . Tree Physiol . 24 , 369 – 376 .  

  44. Maelä , A. , Kolari , P. , Karimai , J. , Nikinmaa , E. , Perämäki , M. and co-authors. 2006. Modelling five years of weather-driven variation of GPP in a boreal forest. Agric. Forest MeteoroL 139 , 382 – 398 .  

  45. Medlyn , B. E. , Badeck , E-W. , de Pury , D. G. G. , Barton , C. V. , Broad-meadow , M. and co-authors. 1999. Effects of elevated [CO2] on photosynthesis in European forest species: a meta-analysis of model parameters. Plant, Cell Environ . 22 , 1475 – 1495 .  

  46. Medlyn , B. E. , Dreyer , E. , Ellsworth , D. , Forstreuter , M. , Harley , P. C. and co-authors. 2002a. Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant, Cell Environ . 25 , 1167 – 1179 .  

  47. Medlyn , B. E. , Loustau , D. and Delzon , S . 2002b . Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus Pinaster Ait .). Plant, Cell Environ . 25 , 1155 – 1165 .  

  48. Meir , P. , Kruijt , B. , Broadmeadow , M. , Barbosa , E. , Kull , O. and co-authors. 2002. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant, Cell Environ . 25 , 343 – 357 .  

  49. Moncrieff , J. B. , Malhi , Y. and L,euning, L. 1996 . The propagation of errors in long-term measurements of land atmosphere fluxes of carbon and water . Global Change Biol . 2 , 231 – 240 .  

  50. Nippert , J. B. , Duursma , R. A. and Marshall , J. D . 2004 . Seasonal variation in photosynthetic capacity of montane conifers . Funct. EcoL 18 , 876 – 886 .  

  51. Ogee , J. , Brunet , Y. , Loustau , D. , Berbigier , P. and Delzon , S . 2003 . MuSICA, a CO2, water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis . Global Change Biol . 9 , 697 – 717 .  

  52. Pelkonen , P. and Hari , P . 1980 . The dependence of the springtime recovery of CO2 uptake in Scots pine on temperature and internal factors . Flora 169 , 398 – 404 .  

  53. Porte , A. and Loustau , D . 1998 . Variability of the photosynthetic characteristics of mature needles within the crown of a 25-year-old Pinus Pinaster . Tree Physiol . 18 , 223 – 232 .  

  54. Rayment , M. B. , Loustau , D. and Jarvis , P. G . 2002 . Photosynthesis and respiration of black spruce at three organizational scales: shoot, branch and canopy . Tree Physiol . 22 , 219 – 229 .  

  55. Sacks , W. J. , Schimel , D. S. , Monson , R. K. and Braswell , B. H . 2006 . Model-data synthesis of diurnal and seasonal CO2 fluxes at Niwot Ridge, Colorado . Global Change Biol . 12 , 240 – 259 .  

  56. Savijärvi , H . 1990 . Fast radiation parameterization schemes for mesoscale and short-range forecast models . J. AppL Meteorol . 29 , 437 – 447 .  

  57. Sellers , P. J . 1985 . Canopy reflectance, photosynthesis and transpiration . Int. J. Remote Sens . 6 , 1335 – 1372 .  

  58. Sellers , P. J. , Berry , J. A. , Collatz , G. J. , Field , C. B. and Hall , E G . 1992 . Canopy reflectance, photosynthesis, and transpiration. Bl. A reanalysis using improved leaf models and a new canopy integration scheme . Remote Sens. Environ . 42 , 187 – 216 .  

  59. Simon , E. , Meixner , E X. , Ganzeveld , L. and Kesselmeier , J . 2005 . Coupled carbon-water exchange of the Amazon rain forest, I. Model description, parameterization and sensitivity analysis . Biogeosciences 2 , 231 – 253 .  

  60. Stenberg , P. , De Lucia , E. H. , Schoettle , A. W. and Smolander , H . 1995 . Photosynthetic light capture and processing from cell to canopy. In: Resource Physiology of Conifers (eds W. Smith , T. Hinckley and J. Roy ). Academic Press, Ltd., London, 3 – 38 .  

  61. Suni , T. , Beminger , E , Vesala , T. , Markkanen , T. , Hari , P. and co-authors. 2003. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Global Change Biol . 9, 1410-142 6 .  

  62. Thornmley , J. H. M . 2002 . Instantaneous canopy photosynthesis: analytical expressions for sun and shade leaves based on exponential light decay down the canopy and an acclimated non-rectangular hyperbola for leaf photosynthesis . Ann. BoL 89 , 451 – 458 .  

  63. van Dijk , A. I. J. M. and Dolman , A. J . 2004 . Estimates of CO2 uptake and release among European forests based on eddy covariance data . Global Change Biol . 10 , 1445 – 1459 .  

  64. Verbeeck , H. , Samson , R ., Verdonck, E and Lemeur, R. 2006. Parameter sensitivity and uncertainty of the forest carbon flux model FORUG: a Monte Carlo analysis. Tree Physiol . 26 , 807 – 817 .  

  65. Walcroft , A. S. , Whitehead , D. , Silvester , W. B. and Kelliher , FM . 1997 . The response of photosynthetic model parameters to temperature and nitrogen concentration in Pinus radiata D . Don. Plant, Cell Environ . 20 , 1338 – 1348 .  

  66. Wang , Y. P. , Baldocchi , D ., L,euning, R., Falge, E. and Vesala T. 2006. Estimating parameters in a land-surface model by applying nonlinear inversion to eddy covariance flux measurements from eight FLUXNET sites. Global Change Biol . 12 , 1 – 19 .  

  67. Wang , K. , Kellomäki , S. and Laitinen , K . 1996 . Acclimation of photosynthetic parameters in Scots pine after three years exposure to elevated temperature and CO2 . Agric. Forest MeteoroL 82 , 195 – 217 .  

  68. Wang , Q. , Tenhunen , J. , Falge , E. , Bemhofer , C. H. , Granier , A. and co-authors. 2003. Simulation and scaling of temporal variation in gross primary production for coniferous and deciduous temperate forest. Global Change Biol . 10 , 37 – 51 .  

  69. Williams , M. , Rastetter , E. B. , Fernandes , D. N. , Goulden , M. L. and co-authors. 1996. Modelling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant, Cell Environ. 19 , 911 – 927 .  

  70. Williams , T. G. and Flanagan , L. B . 1998 . Measuring and modeling environmental influences on photosynthetic gas exchange in Sphagnum and Pleuozium . Plant, Cell Environ . 21 , 555 – 564 .  

  71. Wilson , K. B. , Baldocchi , D. and Hanson , P. J . 2001 . Leaf age affects the seasonal pattern of photosynthetic capacity and net ecosystem exchange of carbon in a deciduous forest . Plant, Cell Environ . 24 , 571 – 583 .  

  72. Wirtz , K. W . 2000 . Simulating the dynamics of leaf physiology and morphology with an extended optimality approach . Ann. BoL 86 , 753 – 764 .  

  73. Wu , Y. , Brashers , B. , Finkelstein , P. L. and Pleim , J. E . 2003 . A multilayer biochemical dry deposition model, 1. Model formulation . J. Geophys. Res . 108 , 4013 – 4025 .  

  74. Wullschleger , S. D . 1993 . Biochemical limitations to carbon assimilation in C3 plants - a retrospective analysis of the A/Ci curve from 109 species . J. Exp. Bot . 44 , 907 – 920 .  

  75. Zha , T. , Kellomäki , S. , Wang , K.-Y. , Ryyppii , A. and Niinisto , S . 2004 . Seasonal and annual stem respiration of Scots pine trees under boreal conditions . Ann. BoL 94 , 889 – 896 .  

comments powered by Disqus