Start Submission Become a Reviewer

Reading: Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen...

Download

A- A+
Alt. Display

Original Research Papers

Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem

Authors:

T. Riutta ,

University of Helsinki, Department of Forest Ecology, FI
X close

J . Laine,

Finnish Forest Research Institute, Parkano Research Unit, FI
X close

M. Aurela,

Finnish Meteorological Institute, Climate and Global Change Research, FI
X close

J . Rinne,

University of Helsinki, Department of Physical Sciences, FI
X close

T. Vesala,

University of Helsinki, Department of Physical Sciences, FI
X close

T. Laurila,

Finnish Meteorological Institute, Climate and Global Change Research, FI
X close

S. Haapanala,

University of Helsinki, Department of Physical Sciences, FI
X close

M. Pihlatie,

University of Helsinki, Department of Physical Sciences, FI
X close

E.-S. Tuittila

University of Helsinki, Department of Forest Ecology, FI
X close

Abstract

The aim of this study was to asses how the variability in carbon gas exchange at the plant community scale affected the C gas exchange estimates at the ecosystem scale in a fen that was homogeneous in a micrometeorological sense, that is, had an even surface topography and plant cover. CO2 and CH4 exchange was measured at the plant community scale with chambers and at the ecosystem scale with the eddy covariance (EC) technique. Community-scale measurements were upscaled to the ecosystem scale by weighting the community-specific estimates by the area of the community. All communities were net CO2 sinks and CH4 sources during the growing season, but net ecosystem production (NEP) and CH4 emissions ranged from 21 to 190 g CO2-C m-2 and from 4.3 to 13 g CH4-C m-2, respectively, between the communities. The seasonal estimates of NEP and CH4, upscaled to the 200 m radius from the EC tower, were 82 and 7.9 g CH4-C m-2, which agreed well with the EC measurements. As the communities differed markedly in their C gas dynamics, their proportions controlled the ecosystem scale estimates. Successful upscaling required detailed knowledge on the proportions and leaf area of the communities.

How to Cite: Riutta, T., Laine, J., Aurela, M., Rinne, J., Vesala, T., Laurila, T., Haapanala, S., Pihlatie, M. and Tuittila, E.-S., 2007. Spatial variation in plant community functions regulates carbon gas dynamics in a boreal fen ecosystem. Tellus B: Chemical and Physical Meteorology, 59(5), pp.838–852. DOI: http://doi.org/10.1111/j.1600-0889.2007.00302.x
5
Views
3
Downloads
  Published on 01 Jan 2007
 Accepted on 25 Jun 2007            Submitted on 11 Oct 2006

Reference

  1. Ahti , T. , Hämet-Ahti , L. and Jalas , J . 1968 . Vegetation zones and their sections in northwestern Europe . Ann. BoL Fenn . 5 , 169 – 211 .  

  2. Alm , J. , Saamio , S. , Nykänen , H. , Silvola , J. and Martikainen , P. J . 1999 . Winter CO2, CH4 and N20 fluxes on some natural and drained boreal peatlands , Biogeochemistiy 44 , 163 – 186 .  

  3. Alm , J. , Talanov , A. , Saamio , S. , Silvola , J. , Ikkonen , E. and co-authors. 1997. Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen, Finland. Oecologia 110 , 423 – 431 .  

  4. Aurela , M. , Laurila , T. and Tuovinen , J. P . 2002 . Annual CO2 balance of a subarctic fen in northern Europe: importance of the wintertime efflux . J. Geophys. Res. — Atmos . 107 , 4607 , doi: https://doi.org/10.1029/2002JD002055 .  

  5. Aurela , M. , Laurila , T. and Tuovinen , J. P . 2004 . The timing of snow melt controls the annual CO2 balance in a subarctic fen . Geophys. Res. Lett . 31 , L16119 , doi: https://doi.org/10.1029/2004GL020315 .  

  6. Aurela , M. , Riutta , T. , Laurila , T. , Tuovinen , J.-P. , Vesala , T. and co-authors. 2007. CO2 exchange of a sedge fen in southern Finland — the impact of a drought period. Tellus 59B, doi: https://doi.org/10.1111/j.1600-0889.2007.00309.x .  

  7. Bubier , J. L. , Frolking , S. , Crill , P. M. and Linder , E . 1999 . Net ecosystem productivity and its uncertainty in a diverse boreal peatland . J. Geophys. Res. Atmos . 104 , 27683 – 27692 .  

  8. Bubier , J. L. , Moore , T. R. and Roulet , N. T . 1993 . Methane emissions from wetlands in the Midboreal Region of Northern Ontario, Canada . Ecology 74 , 2240 – 2254 .  

  9. Chanton , J. , Bauer , J. , Glaser , P. , Siegel , D. , Kelley , C. and co-authors. 1995. Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. Geochim. Cosmochim. Acta 59, 3663-366 8 .  

  10. Couwenberg , J. and Joosten , H . 2005 . Self-organization in raised bog patterning: the origin of microtope zonation and mesotope diversity . J. Ecol . 93 , 1238 – 1248 .  

  11. Ding , W. X. , Cai , Z. C. and Tsuruta , H . 2004 . Methane concentration and emission as affected by methane transport capacity of plants in freshwater marsh . Water Air Soil Pollut . 158 , 99 – 111 .  

  12. Drebs , A. , Nordlund , A. , Karlsson , P. , Helminen , J. and Rissanen , P . 2002 . Climatological statistics of Finland 1971-2000 . Clim. Stat. Finland 1 , 1 – 99 .  

  13. Gorham , E . 1991 . Northern Peatlands — role in the carbon-cycle and probable responses to climatic warming . Ecol. AppL 1 , 182 – 195 .  

  14. Griffis , T. J. , Rouse , W. R. and Waddington , J. M . 2000 . Interannual variability of net ecosystem CO2 exchange at a subarctic fen . Global Biogeochem. Cycles 14 , 1109 – 1121 .  

  15. Hargreaves , K. J. , Fowler , D. , Pitcairn , C. E. R. and Aurela , M . 2001 . Annual methane emission from Finnish mire estimated from eddy covariance campaign measurements . Theor. Appl. Climatol . 70 , 202 – 213 .  

  16. Hämet-Ahti , L. , Suominen , J. , Ulvinen , T. and Uotila , P. (eds) 1998 . Retkeilykasvio . 4th Edition . Yliopistopaino , Helsinki. (In Finnish ).  

  17. Heikkinen , J. E. P. , Elsakov , V. and Martikainen , P. J . 2002a . Carbon dioxide and methane dynamics and annual carbon balance in tundra wetland in NE Europe, Russia . Global Biogeochem. Cycles 16 , 1115 , doi: https://doi.org/10.1029/2002GB001930 .  

  18. Heikkinen , J. E. P. , Maljanen , M. , Aurela , M. , Hargreaves , K. and Martikainen , P. J . 2002b . Carbon dioxide and methane dynamics in a sub-Arctic peatland in northern Finland . Polar Res . 21 , 49 – 62 .  

  19. Heikkinen , J. E. P. , Virtanen , T. , Huttunen , J. T. , Elsakov , V. and Martikainen , P. J . 2004 . Carbon balance in East European tundra. Global Biogeochem. Cycles 18, GB1023, doi: https://doi.org/10.1029/2003GB002054 .  

  20. Hill , M. O . 1979 . 7'WINSPAN — A FORTRAN Program for Arranging Multivariate Data in an Ordered Two-way Table by Classification of the Individuals and Attributes . Ecology and Systematics, Cornell University , Ithaca , New York .  

  21. Kljun , N. , Calanca , P. , Rotachhi , M. W. and Schmid , H. P . 2004 A simple parameterisation for flux footprint predictions . Bound-Layer Meteor 112 , 503 – 523 .  

  22. Koponen , T. , Isoviita , P. and Lammes , T . 1977 . The Bryophytes of Finland: an annotated checklist . Flora Fennica 6 , 1 – 77 .  

  23. Kutzbach , L. , Wagner , D. and Pfeiffer , E. M . 2004 . Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia . Biogeochemisby 69 , 341 – 362 .  

  24. Laine , A. , Sottocomola , M. , Kiely , G. , Byrne , K. A. , Wilson , D. and co-authors. 2006. Estimating net ecosystem exchange in a patterned ecosystem: an example from a blanket bog. Agric. Forest MeteoroL 138 , 231 – 243 .  

  25. Lafleur , P. M. , McCaughey , J. H. , Joiner , D. W. , Bartlett , P. A. and Jelinski , D. E . 1997 . Seasonal trends in energy, water, and carbon dioxide fluxes at a northern boreal wetland . J. Geophys. Res. — Atmos . 102 , 29,009 – 29,020 .  

  26. Lloyd , J. and Taylor , J. A . 1994 . On the temperature-dependence of soil respiration . Funct. EcoL 8 , 315 – 323 .  

  27. Malmer , N. , Svensson , B. M. and. Wallen , B . 1994 . Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems . Folia Geobotanica & Phytotcvconomica 29 , 483 – 496 .  

  28. Moore , T. R. and Knowles , R . 1990 . Methane emissions from fen, bog and swamp peatlands in Quebec . Biogeochemistiy 11 , 45 – 61 .  

  29. Rhine , J. , Riutta , T. , Pihlatie , M. , Aurela , M. , Haapanala. S. and co-authors. 2007. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique. Tellus 59B, 449 – 457 .  

  30. Ruuhijärvi , R . 1983 . The Finnish mire types and their reginonal distribution. In: Ecosystems of the of the World 4B Mires: Swamp, Bog, Fen and Moor Regional Studies (ed. A. J. P. Gore ). Elsevier, Amsterdam, pp. 47 – 68 .  

  31. Sjörs , H . 1983 . Mires of Sweden. In: Ecosystems of the of the World 4B Mires: Swamp, Bog, Fen and Moor. Reginonal Studies (ed. A. J. P. Gore ). Elsevier, Amsterdam, 69 – 94 .  

  32. Soegaard , H. and Nordstroem , C . 1999 . Carbon dioxide exchange in a high-arctic fen estimated by eddy covariance measurements and modelling . Global Change Biol . 5 , 547 – 562 .  

  33. Sommerfeld , R. A. , Mosier , A. R. and Musselman , R. C . 1993 . CO2, CH4 and N20 flux through a wyoming snowpack and implications for global budgets . Nature 361 , 140 – 142 .  

  34. Strack , M. , Waddington , J. M , Rochefort , L. and Tuittila , E.-S . 2006 . Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown . J. Geophys. Res. — Biogeosci . 111 , G02006 , doi: https://doi.org/10.1029/2005JG000145 .  

  35. Ter Braak , C. J. E. and Smilauer, P. 2002. CANOCO Reference Manual and CanoD raw for Windows User's Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, New York, USA.  

  36. Tuittila , E. S. , Vasander , H. and Laine , J . 2004 . Sensitivity of C sequestration in reintroduced Sphagnum to water-level variation in a cutaway peatland . Restoration EcoL 12 , 483 – 493 .  

  37. Waddington , J. M. and Roulet , N. T . 2000 . Carbon balance of a boreal patterned peatland . Global Change Biol . 6 , 87 – 97 .  

  38. Wallen , B. , Falkengren-Grerup , U. and Malmer , N . 1988 . Biomass, productivity and relative rate of photosynthesis of Sphagnum at different water levels on a south Swedish peat bog . Holarctic EcoL 11 , 70 – 76 .  

  39. Wilson , D. , Alm , J. , Riutta , T. , Laine , J. , Byrne , K. A. and co-authors. 2007. A high resolution green area index for carbon gas modelling in vascular plant peatland communities. Plant EcoL 190, 37-51, doi: https://doi.org/10.1007/s11258-006-9189-1 .  

comments powered by Disqus