Start Submission Become a Reviewer

Reading: Release of CO2 and CH4 from small wetland lakes in western Siberia

Download

A- A+
Alt. Display

Original Research Papers

Release of CO2 and CH4 from small wetland lakes in western Siberia

Authors:

M. E. Repo ,

University of Kuopio, Department of Environmental Science, FI
X close

J . T. Huttunen,

University of Kuopio, Department of Environmental Science, FI
X close

A. V. Naumov,

Institute of Soil Science and Agrochemistry, Russian Academy of Science, RU
X close

A. V. Chichulin,

Institute of Soil Science and Agrochemistry, Russian Academy of Science, RU
X close

E. D. Lapshina,

Yugra State University, RU
X close

W. Bleuten,

Utrecht University, Department of Physical Geography, NL
X close

P. J . Martikainen

University of Kuopio, Department of Environmental Science, FI
X close

Abstract

CO2 and CH4 fluxes were measured from three small wetland lakes located in the middle taiga and forest tundra zones onWest Siberian Lowlands (WSL), the world’s largest wetland area. Fluxes were measured during summer 2005 using floating chambers and were validated against the thin boundary layer model based on the relationship between gas exchange and wind speed. All studied lakes were supersaturated with CO2 and CH4, and acted on a seasonal basis as sources of these greenhouse gases to the atmosphere. Daily mean CO2 fluxes measured with chambers ranged from near the zero to 3.1 g CO2 m-2 d-1 and corresponding CH4 fluxes from 1.1 to 120 mg CH4 m-2 d-1. CH4 ebullition (0.65–11 mg CH4 m-2 d-1) was detected in two of the lakes. Total carbon evasion from the studied lakes during the active season was 23–66 g C m-2, of which more than 90% was released as CO2-C. The carbon loss per unit area from the studied lakes was of similar magnitude as previously reported values of net carbon uptake of Siberian peatlands. This emphasizes the importance of small water-bodies in the carbon balance of West Siberian landscape.

How to Cite: Repo, M.E., Huttunen, J.T., Naumov, A.V., Chichulin, A.V., Lapshina, E.D., Bleuten, W. and Martikainen, P.J., 2007. Release of CO2 and CH4 from small wetland lakes in western Siberia. Tellus B: Chemical and Physical Meteorology, 59(5), pp.788–796. DOI: http://doi.org/10.1111/j.1600-0889.2007.00301.x
7
Views
2
Downloads
  Published on 01 Jan 2007
 Accepted on 25 Jun 2007            Submitted on 3 Nov 2006

Reference

  1. Algesten , G. , Sobek , S. , Bergstrom , A.-K. , Jonsson , A. , Tranvilc , L. J. , and co-authors. 2005. Contribution of sediment respiration to summer CO2 emission from low productive boreal and subarctic lakes. Microb. EcoL 50 , 529 – 535 .  

  2. Arneth , A. , Kurbatova , J. , Kolle , O. , Shibistova , O. B. , Lloyd , J. , and co-authors. 2002. Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and a central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes. Tellus 54B, 514 – 530 .  

  3. Bastviken , D. , Cole , J. , Pace , M. and Tranvik , L . 2004 . Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochem. Cycles 18, GB4009, doi: https://doi.org/10.1029/2004GB002238 .  

  4. Billett , M. F. , Palmer , S. M. , Hope , D. , Deacon , C. , Storeton-West , R. , and co-authors. 2004. Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Global Biogeochem. Cycles 18, GB1024, doi: https://doi.org/10.1029/2003GB002058 .  

  5. Bubier , J. , Moore , T. , Savage , K. and Crill , P . 2005 . A comparison of methane flux in a boreal landscape between a dry and a wet year. Global Biogeochem. Cycles 19, GB1023, doi: https://doi.org/10.1029/2004GB002351 .  

  6. Casper , P. , Maberly , S. C. , Hall , G. H. and Finlay , B. J . 2000 . Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere . Biogeochemistiy 49 , 1 – 19 .  

  7. Chanton , J. P. and Whiting , G. J . 1995 . Trace gas exchange in freshwater and coastal marine environments: Ebullition and transport by plants. In: Biogenic Trace Gases: Measuring Emissions from Soil and Water , (eds P. A. Matson and R. C. Harriss ). Blackwell Science, Oxford, 98 – 125 .  

  8. Cole , J. J. , Caraco , N. F. , Kling , G. W. and Kratz , T. K . 1994 . Carbon dioxide supersaturation in the surface waters of lakes . Science 265 , 1568 – 1570 .  

  9. Cole , J. J. and Caraco , N. F . 1998 . Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6 . Limnol. Oceanogr 43 , 647 – 656 .  

  10. Crusius , J. and Wanninlchof , R . 2003 . Gas transfer velocities measured at low wind speed over a lake . Limnol. Oceanogr . 48 , 1010 – 1017 .  

  11. Downing , J. A. , Prairie , Y. T. , Cole , J. J. , Duarte , C. M. , Tranvilc , L. J. , and co-authors. 2006. The global abundance and size distribution of lakes, ponds and impoundments. Limnol. Oceanogr 51 , 2388 – 2397 .  

  12. Duchemin , E. , Lucotte , M. and Canuel , R . 1999 . Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies . Environ. Sci. TechnoL 33 , 350 – 357 .  

  13. Eugster , W. , Kling , G. , Jonas , T. , McFadden , J. P. , Wiiest , A. , and co-authors. 2003. CO2 exchange between air and water in an Arctic Alaskan and midlatitude Swiss lake: importance of convective mixing. J. Geophys. Res . 108, 4362, doi: https://doi.org/10.1029/2002JDO02653 .  

  14. Friborg , T. , Soegaard , H. , Christensen , T. R. , Lloyd , C. R. and Panikov , N. S . 2003 . Siberian wetlands: Where a sink is a source . Geophys. Res. Lett . 30 , 2129 , doi: https://doi.org/10.1029/2003GL017797 .  

  15. Ford , P. W. , Boon , P .1. and Lee, K. 2002. Methane and oxygen dynamics in a shallow floodplain lake: the significance of periodic stratification. Hydrobiologia 485 , 97 – 110 .  

  16. Goddard Institute for Space Studies 2006. GISTEMP homepage. Available online at http://data.giss.nasa.gov/gistemp/station_datafifform (verified 28 March 2006).  

  17. Gorham , E . 1991 . Northern peatlands: role in the carbon cycle and probable responses to climatic warming . EcoL AppL 1 , 182 – 195 .  

  18. Hamilton , J. D. , Kelly , C. A. , Rudd , J. W. M. , Hesslein , R. H. and Roulet , N. T . 1994 . Flux to the atmosphere of CH4 and CO2 from wetland ponds on the Hudson-Bay lowlands (I-IBLs) . J. Geophys. Res . 99 , 1495 – 1510 .  

  19. Ho , D. T. , Asher , W. E. , Bliven , L. F. , Schlosser , P. and Gordan , E. L . 2000 . On mechanisms of rain-induced air-water gas exchange . J. Geophys. Res . 105 , 24,045 – 24,057 .  

  20. Ho , D. T. , Bliven , L. F. Wanninkhof , R. and Schlosser , P . 1997 . The effect of rain on air-water gas exchange . Tellus 49B , 149 – 158 .  

  21. Huttunen , J. T. , Lappalainen , K. M. , Saarijärvi , E. , Väisdnen , T. and Martilcainen P. J . 2001 . A novel sediment gas sampler and a subsurface gas collector used for measurement of the ebullition of methane and carbon dioxide from a eutrophied lake . Sci. Total Environ . 266 , 153 – 158 .  

  22. Huttunen , J. T. , Väisänen , T. S. , Heilcicinen , M. , Hellsten , S. , Nykänen , H. , and co-authors. 2002. Exchange of CO2, CH4 and N20 between the atmosphere and two northern boreal ponds with catchments dominated by peatlands or forests. Plant Soil 242 , 137 – 146 .  

  23. Huttunen , J. T. , Alm , J. , Liilcanen , A. , Juutinen , S. , Larmola , T. , and co-authors. 2003. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere 52 , 609 – 621 .  

  24. Jähne , B. , Miinnich , K. O. , Bösinger , R. , Dutzi , A. , Huber , W. , and co-authors. 1987. On the parameters influencing air-water gas exchange . J. Geophys. Res . 92 , 1937– 1949 .  

  25. Kling , G. W. , Kipphut , G. W. and Miller , M. C . 1991 . Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets . Science 251 , 298 – 301 .  

  26. Kling , G. W. , Kipphut , G. W. and Miller , M. C . 1992 . The flux of CO2 and Cat from lakes and rivers in arctic Alaska . Hydrobiologia 240 , 23 – 36 .  

  27. Kortelainen , P. , Rantalcari , M. , Huttunen , J. T. , Mattsson , T. , Alm , J. , and co-authors. 2006. Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes. Glob. Change Biol . 12, 1554-156 7 .  

  28. Lambert , M. and Frechette , J.-L . 2005 . Analytical techniques for measuring fluxes of CO2 and CI-Li from hydroelectric reservoirs and natural water bodies. In: Greenhouse Gas Emissions — Fluxes and Processes: Hydroelectric Reservoirs and Natural Environments . (eds A. Tremblay , L. Varfalvy , C. Roehm and M. Garneau ). Springer Press, Berlin, 37 – 60 .  

  29. Lide , D. R. and Fredrilcse , H. P. R. (ed.) 1995 . CRC Handbook of Chemistry and Physics . 76th Edition . CRC Press , Boca Raton, FL .  

  30. Liss , P. S. and Slater , P. G . 1974 . Flux of gases across the air-sea interface . Nature 247 , 181 – 184 .  

  31. Martens , C. S. , Kelley , C. A. and Chanton , J. P . 1992 . Carbon and hydrogen isotopic characterization of methane from wetlands and lakes of the Yukon-Kuskokwim delta, Western Alaska . J. Geophys. Res . 97 , 16689 – 16701 .  

  32. Matthews , C. J. D. , St. Louis , V. L. and Hesslein , R. H . 2003 . Comparison of three techniques used to measure diffusive gas exchange from sheltered aquatic surfaces . Environ. Sci. TechnoL 37 , 772 – 780 .  

  33. Michmerhuizen , C. M. , Striegl , R. G. and McDonald , M. E . 1996 . Potential methane emission from north-temperate lakes following ice melt . LimnoL Oceanogr . 41 , 985 – 991 .  

  34. Naumov , A. V . 2004 . Carbon budget and emission of greenhouse gases in bog ecosystems of Western Siberia . Eurasian Soil Sci . 37 , 58 – 64 .  

  35. Panikov , N. S. , Sizova , M. V. , Zelenev , V. V. , Machov , G. A. , Naumov , A. V. , and co-authors. 1995. Methane and carbon dioxide emission from several Vasyugan wetlands: Spatial and temporal variations. EcoL Chem . 4 , 13 – 23 .  

  36. Riera , J. L. , Schindler , J. E. and Kratz T. K . 1999 . Seasonal dynamics of carbon dioxide and methane in two clear-water lakes and two bog lakes in northern Wisconsin, U.S.A. Can. J . Fish. Aquat. Sci . 56 , 265 – 274 .  

  37. Sheng , Y. , Smith , L. C. , MacDonald , G. M. , Kremenetski , K. V. , Frey , K. E. , and co-authors. 2004. A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Global Biogeochem. Cycles 18, GB3004, doi: https://doi.org/10.1029/2003GB002190 .  

  38. Striegl , R. G. and Michmerhuizen , C. M . 1998 . Hydrologic influence on methane and carbon dioxide dynamics at two north—central Minnesota lakes . LimnoL Oceanogr 43 , 1519 – 1529 .  

  39. Wanninlchof , R . 1992 . Relationship between gas exchange and wind speed over the ocean . J. Geophys. Res . 97 , 7373 – 7382 .  

  40. Whiting , G. J. and Chanton , J. P . 1993 . Primary production control of methane emission from wetlands . Nature 364 , 794 – 795 .  

  41. Yefremov , S. P. and Yefremova , T. T . 2001 . Present stocks of peat and organic carbon in bog ecosystems of West Siberia. In: Carbon Storage and Atmospheric Exchange by West Siberian Peatlands , (eds W. Bleuten and E. D. Lapshina ). FGUU Sci. Reports 2001-1, Utrecht University, Utrecht, 73 – 78 .  

comments powered by Disqus