Start Submission Become a Reviewer

Reading: Sensitivity of Lagrangian Stochastic footprints to turbulence statistics

Download

A- A+
Alt. Display

Original Research Papers

Sensitivity of Lagrangian Stochastic footprints to turbulence statistics

Authors:

M. Göckede ,

Department of Forest Science, Oregon State University, Corvallis, OR, 97331, US
X close

C. Thomas,

Department of Forest Science, Oregon State University, Corvallis, OR, 97331, US
X close

T. Markkanen,

Department of Micrometeorology, University of Bayreuth, D-95440 Bayreuth, DE
X close

M. Mauder,

Agriculture and Agri-Food Canada, Research Branch, Ottawa, ON, K1A 0C6, CA
X close

J. Ruppert,

Department of Micrometeorology, University of Bayreuth, D-95440 Bayreuth, DE
X close

T. Foken

Department of Micrometeorology, University of Bayreuth, D-95440 Bayreuth, DE
X close

Abstract

This study tests the sensitivity of a Lagrangian Stochastic footprint model to the turbulence statistics describing the flow field, with a focus on the within canopy processes. Representative profiles of the input velocity statistics are taken from a long-term dataset of turbulence measurements within and above a tall spruce canopy. Based on a wavelet tool, which allows a detailed analysis of coherent structures along the vertical profile, we characterize several typical states of coupling and decoupling between surface, canopy and atmosphere. For each coupling regime, three flux footprints using different sources for turbulence statistics are compared: the first based on conditionally-averaged measurements, the second on a simple numerical solution and the third on measurements taken from literature. The effects of profile smoothing and connecting measured canopy data to parametrized atmospheric surface layer profiles are considered. Significant differences between footprints based on modelled and measured profiles were found for exchange regimes with the lower section of the profiles decoupled from the atmospheric surface layer. As such cases are likely to occur for tall canopies with moderate density, our results suggest that the accuracy of Lagrangian Stochastic footprint modelling could be improved by using better turbulence profiles for different exchange regimes.

How to Cite: Göckede, M., Thomas, C., Markkanen, T., Mauder, M., Ruppert, J. and Foken, T., 2007. Sensitivity of Lagrangian Stochastic footprints to turbulence statistics. Tellus B: Chemical and Physical Meteorology, 59(3), pp.577–586. DOI: http://doi.org/10.1111/j.1600-0889.2007.00275.x
3
Views
2
Downloads
  Published on 01 Jan 2007
 Accepted on 11 Jan 2007            Submitted on 28 Apr 2006

References

  1. Antonia , R. A. , Browne , L. W. B. , Bisset , D. K. and Fulachier , L . 1987 . A description of the organized motion in the turbulent far wake of a cylinder at low Reynolds numbers . J. Fluid. Mech . 184 , 423 – 444 .  

  2. Arya , S. P . 2001 . Introduction to Micrometeorology . Academic Press , San Diego , pp. 415 .  

  3. Aubinet , M. , Grelle , A. , Ibrom , A. , Rannilc , U. , Moncrieff, J. and co-authors. 2000. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res. 30, 113 – 175.  

  4. Baldocchi , D. D . 1997 . Flux footprints within and over forest canopies . Bound.-Layer Meteorol . 85 , 273 – 292 .  

  5. Baldocchi , D. D. , Finnigan , J. J. , Wilson , K. , Paw U., K. T. and co-authors. 2000. On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Bound.-Layer Meteorol. 96, 257 – 291.  

  6. Baldocchi , D. D. , Falge , E. , Gu , L. , Olson , R. , Hollinger , D. and co-authors. 2001. FLUXNET: A new tool to study the temporal and spa-tial variability of ecosystem-scale carbon dioxide, water vapour and energy flux densities. Bull. Amer. Meteorol. Soc. 82, 2415 – 2435.  

  7. Finnigan , J. J. 2000. Turbulence in Plant Canopies. Annu. Rev. Fluid Mech. 32, 519 – 571.  

  8. Foken , T. , Göckede , M. , Mauder , M. , Mahrt , L. , Amiro , B. D. and co-authors. 2004. Post-field data quality control. In: Handbook of Mi-crometeorology: A Guide for Surface Flux Measurements (eds. X. Lee, W. J. Massman, and B. E. Law). Kluwer Academic Publishers, Dordrecht, pp. 181 – 208.  

  9. Garratt , J. R. 1980. Surface influence upon vertical profiles in the atmo-sphere near-surface layer. Quart. J. Roy. Meteorol. Soc. 106, 803 – 819.  

  10. Gerstberger , P. , Foken , T. and Kalbitz , K. 2004. The Lehstenbach and Steinkreuz catchments in NE Bavaria, Germany. In: Biogeochemistiy of Forested Catchments in a Changing Environment, Ecological Stud-ies, Vol. 172 (ed. E. Matzner ). Springer, Berlin, Heidelberg, New York, pp. 15 – 44.  

  11. Göckede , M. , Rebmann , C. and Foken , T . 2004 . A combination of qual-ity assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites . Agric. For Mete-orol . 127 , 175 – 188 .  

  12. Göckede , M. , Marlcicanen , T. , Hasager , C. B. and Foken , T . 2006 . Up-date of a footprint-based approach for the characterisation of complex measurement sites . Bound.-Layer Meteorol . 118 , 635 – 655 .  

  13. Horst , T. W. and Weil , J. C. 1992. Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound.-Layer Mete-orol. 59, 279 – 296.  

  14. Kljun , N. , Rotach , M. W. and Schmid , H. P. 2002. A three-dimensional backward Lagrangian footprint model for a wide range of boundary-layer stratifications. Bound.-Layer Meteorol. 103, 205 – 226.  

  15. Leclerc , M. Y. and Thurtell , G. W . 1990 . Footprint prediction of scalar fluxes using a Markovian analysis . Bound.-Layer Meteorol . 52 , 247 – 258 .  

  16. Lee , X . 1998 . On micrometeorological observations of surface-air ex-change over tall vegetation . Agric. For Meteorol . 91 , 39 – 49 .  

  17. Leuning , R . 2000 . Estimation of scalar source/sink distributions in plant canopies using Lagrangian dispersion analysis: Corrections for at-mospheric stability and comparison with a multilayer canopy model . Bound.-Layer Meteorol . 96 , 293 – 314 .  

  18. Marcolla , B. , Pitacco , A. and Cescatti , A . 2003 . Canopy architecture and turbulence structure in a coniferous forest . Bound.-Layer Meteorol . 108 , 39 – 59 .  

  19. Massman , W. J . 1997 . An analytical one-dimensional model of mo-mentum transfer by vegetation of arbitrary structure . Bound.-Layer Meteorol . 83 , 407 – 4021 .  

  20. Massman , W. J. and Weil , J. C . 1999 . An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure . Bound.-Layer Meteorol . 91 , 81 – 107 .  

  21. Rannilc , U. , Marklcanen , T. , Raittila , J. , Han , P. and Vesala , T . 2003 . Turbulence statistics inside and over forest: Influence on footprint prediction . Bound.-Layer Meteorol . 109 , 163 – 189 .  

  22. Rannilc , U. , Aubinet , M. , Kurbanmuradov , O. , Sabelfeld , K. K. , Marklca-nen, T. and Vesala, T. 2000. Footprint analysis for measurements over a heterogeneous forest. Bound.-Layer Meteorol. 97, 137 – 166.  

  23. Rebmann , C. , Göckede , M. , Foken , T. , Aubinet , M. , Aurela , M. and co-authors. 2005. Quality analysis applied on eddy covariance mea-surements at complex forest sites using footprint modelling. Theor AppL ClimatoL 80, 121 – 141.  

  24. Sawford , B. L . 1985 . Lagrangian stochastic simulation of concentration mean and fluctuation fields . J. Clim. AppL Meteorol . 24 , 1152 – 1166 .  

  25. Schmid , H. P . 1997 . Experimental design for flux measurements: match-ing scales of observations and fluxes . Agric. For Meteorol . 87 , 179 – 200 .  

  26. Schmid , H. P . 2002 . Footprint modelling for vegetation atmosphere ex-change studies: a review and perspective . Agric. For Meteorol . 113 , 159 – 183 .  

  27. Schmid , H. P. and Oke , T. R . 1988. Estimating the source area of a turbu-lent flux measurement over a patchy surface. In: Proceedings of the 8th Symposium on Turbulence and Diffusion, American Meteorological Society, Boston, MA, pp. 123 – 126.  

  28. Schuepp , P. H. , Leclerc , M. Y. , MacPherson , J. I. and Desjardins , R. L . 1990 . Footprint prediction of scalar fluxes from analytical so-lutions of the diffusion equation . Bound.-Layer Meteorol . 50 , 355 – 373 .  

  29. Thomas , C. and Foken , T . 2005 . Detection of long-term coherent ex-change over Spruce Forest using wavelet analysis . Theor Appl. Cli-matoL 80 , 91 – 104 .  

  30. Thomas , C. and Foken , T . 2006. Organised motion in a tall spruce canopy: temporal scales, structure spacing and terrain effects. Bound.-Layer Meteorol., DOI 10.1007/s10546-006-9087-z.  

  31. Thomas , C. and Foken , T . 2007. Flux contribution of coherent structures and its implications for the exchange of energy and matter in a tall spruce canopy. Bound.-Layer Meteorol., DOI 10.1007/s10546-006-9144-7.  

  32. Thomas , C. , Ruppert , J. , Liiers , J. , Schröter , J. , Mayer , J. C. and co-authors. 2004. Documentation of the WALDATEM-2003 Experiment. Universität Bayreuth, Abteilung Milcrom-eteorologie, Arbeitsergebnisse, Print ISSN 1614-8916, pp. 59.  

  33. Thomson , D. J . 1987 . Criteria for the selection of stochastic models of particle trajectories in turbulent flows . J. Fluid Mech . 180 , 529 – 556 .  

  34. Wilson , J. D. and Sawford , B. L . 1996 . Review of Lagrangian stochas-tic models for trajectories in the turbulent atmosphere . Bound.-Layer Meteorol . 78 , 191 – 210 .  

  35. Wilson , J. D. , Legg , B. J. and Thomson , D. J . 1983 . Calculation of particle trajectories in the presence of a gradient in turbulent-velocity variance . Bound.-Layer Meteorol . 27 , 163 – 169 .  

comments powered by Disqus